B. Tech. (EE) : Syllabus Revision in 2016-17.

S. No	Course Code	Ses	sion 2015-16	Session 2016-17	Remark Syllabus Change/ new course
1	<u>BT101</u>	Engin	eering Physics I	Engineering Physics I	No Change
		UNIT-I			
			Atomic Structure and	UNIT-I	
			Solid State: Atomic	Atomic Structure and Solid State: Atomic	
			energy levels and	energy levels and electronic configuration,	
			electronic configuration,	Intermolecular forces and binding, phases of	
			Intermolecular forces	matter, crystal structure simple cubic , body	
			and binding, phases of	centered cubic and face centered cubic	
			matter, crystal structure	structures, energy bands in solids , band	
			simple cubic , body	structure of metals, semiconductors and	
			centered cubic and face	insulators.	
			centered cubic		
			structures, energy	UNIT-II	
			bands in solids , band	Semiconductor Physics: Extrinsic and	
			structure of metals,	intrinsic semiconductors, Fermi levels of	
			semiconductors and	undoped and doped semiconductors, p-n	
			insulators.	junction, depletion region, forward and	
		UNIT-II		reverse biased p-n junction, volt-Ampere	
			Semiconductor Physics:	characteristics of a diode , effect of	
			Extrinsic and intrinsic	temperature on diode characteristics, Zener	
			semiconductors, Fermi	diode, tunnel diode, photodiode and LEDs,	
			levels of undoped and	their structure and characteristics.	
			doped semiconductors,		
			p-n junction, depletion		
			region, forward and		
			reverse biased p-n	UNIT-III	
			junction, volt-Ampere	Theory of Relativity : Absolute and relative	
			characteristics of a diode	frames of reference, Galilean	
			, effect of temperature	transformations, importance of Michelson-	
			on diode characteristics,	Morley experiment, postulates of special	
			Zener diode, tunnel	theory of relativity, Lorentz transformations,	
			diode, photodiode and	time dilation and length contraction,	
			LEDs , their structure	velocity addition, mass-energy relationship,	
			and characteristics.	elementary ideas about general theory of	
		UNIT-III		relativity.	

	Theory of Relativity :	
	Absolute and relative	UNIT-IV
	frames of reference,	Element
	Galilean	particle
	transformations,	experim
	importance of	matter, S
	Michelson-Morley	dimensio
	experiment, postulates	physical
	of special theory of	Heisenbe
	relativity, Lorentz	phenom
	transformations, time	
	dilation and length	UNIT5-V
	contraction, velocity	Oscillatio
	addition, mass-energy	oscillato
	relationship, elementary	Damping
	ideas about general	damping
	theory of relativity.	waves,e
UNIT-IV		
	Elementary Quantum	
	Mechanics: Wave	
	particle duality,	
	deBroglie waves,	
	experimental evidence	
	of wave nature of	
	matter, Schrodinger	
	wave equation in One	
	dimension, eigen values	
	and eigen functions,	
	physical interpretation	
	of wave function,	
	Heisenberg uncertainty	
	principle, tunneling	
	phenomenon.	
UNIT5-V		
	Oscillation & Waves :	
	Simple harmonic	
	oscillator with example,	
	energy of oscillator,	

Damping

tary Quantum Mechanics: Wave duality, deBroglie waves, nental evidence of wave nature of Schrodinger wave equation in One ion, eigen values and eigen functions, interpretation of wave function, perg uncertainty principle, tunneling nenon.

V

ion & Waves : Simple harmonic or with example, energy of oscillator, ig oscillator, viscous & solid friction g,Qualityfactor,Resonance standing elastic waves,

			oscillator,viscous & solid		
			friction		
			damping,Qualityfactor,R		
			esonance standing		
			waves, elastic waves,		
2	<u>BT102</u>	INTRODUC	TION TO COMPUTER	INTRODUCTION TO COMPUTER	No Change
		FUNDA	MENTAL AND IT	FUNDAMENTAL AND IT	
		UNIT-I			
			Computer System:	UNIT-I	
			Basics of computer	Computer System: Basics of computer	
			systems, history, types	systems, history, types and Generation of	
			and Generation of	computer, capability and limitations of	
			computer, capability and	computer systems. Hardware organization:	
			limitations of computer	Anatomy of a digital computer, CPU.Internal	
			systems. Hardware	architecture of CPU.Memory Units: Memory	
			organization: Anatomy	Hierarchy, Primary Memory, Secondary	
			of a digital computer,	Memory, cache memory. Storage Devices,	
			CPU.Internal	Input and Output Devices.	
			architecture of	UNIT-II	
			,	Operating Systems: DOS Internal External	
			Memory Hierarchy,	Operating Systems : DOS Internal, External	
			Primary Memory,	commands, Windows (2000 and NT),	
			Secondary Memory,	Overview of architecture of Windows, tools	
			cache memory. Storage	and system utilities including registry ,	
			Devices, Input and	partitioning of hard disk , Overview of Linux	
			Output Devices.	architecture , File system , file and	
		UNIT-II		permissions, concept of user and group,	
				installation of rpm and deb based packages.	
			Operating Systems: DOS	UNIT-III	
			Internal, External	Number system & Conversions: decimal,	
			commands, Windows (binary, octal and hexadecimal number	
			2000 and NT) , Overview	systems and their inter conversions, 1's and	
			of architecture of	2's complement representation, negative	
			Windows, tools and	numbers and their representation, BCD,	
			system utilities including	EBCDIC , ASCII and Unicode. Binary	
			registry , partitioning of	Arithmetic operations: addition, subtraction,	
			hard disk , Overview of	multiplication, division.	

	Linux architecture , File	
	system , file and	UNIT-IV
	permissions , concept of	
	user and group ,	Networking Basics - Uses of a Network and
	installation of rpm and	Common types of Networks, Network
	deb based packages.	topologies and protocols, Network media
UNIT-III		and hardware, Overview of Database
	Number system &	Management System.
	Conversions: decimal,	
	binary, octal and	UNIT-IV
	hexadecimal number	
	systems and their inter	Data Processing: Introduction to MS office,
	conversions, 1's and 2's	MS-Power Point and MS-Excel, Introduction
	complement	to Electronic Spreadsheets, Applications of
	representation,	Electronic Spreadsheets, Types of
	negative numbers and	Spreadsheets, Features of MS-Excel, Starting
	their representation,	MS-Excel, Contents of the MS-Excel window,
	BCD, EBCDIC , ASCII and	Cell Referencing, Ranges and Functions,
	Unicode. Binary	Formatting Worksheets and Creating Charts,
	Arithmetic operations:	Data Forms and Printing
	addition, subtraction,	
	multiplication, division.	Introduction to MS-PowerPoint :
UNIT-IV		Introduction to MS-PowerPoint, What is a
		Presentations?, Slides, Working with Slides,
		Slides Show and Printing Presentation
	Networking Basics -	
	Uses of a Network and	
	Common types of	
	Networks, Network	
	topologies and	
	protocols, Network	
	media and hardware,	
	Overview of Database	
	Management System.	
UNIT-IV		
	Data Processing:	
	Introduction to MS	

		office MC Dower Deint		
		office, MS-Power Point		
		and MS-Excel,		
		Introduction to		
		Electronic Spreadsheets,		
		Applications of		
		Electronic Spreadsheets,		
		Types of Spreadsheets,		
		Features of MS-Excel,		
		Starting MS-Excel,		
		Contents of the MS-		
		Excel window, Cell		
		Referencing, Ranges and		
		Functions, Formatting		
		Worksheets and		
		Creating Charts, Data		
		Forms and Printing		
		Introduction to MS-		
		PowerPoint :		
		Introduction to MS-		
		PowerPoint, What is a		
		Presentations?, Slides,		
		Working with Slides,		
		Slides Show and Printing		
		Presentation		
3	<u>BT103</u>	Applied Mathematics I	Applied Mathematics I	No Change
		UNIT-I	UNIT-I	
		Functions of variables:	Functions of variables: Geometric	
		Geometric	representation, limit, continuity and	
		representation, limit,	differentiability of functions of several	
		continuity and	variables , partial and full derivatives,	
		differentiability of	derivatives of composite functions, Euler's	
		functions of several	theorem on homogeneous functions,	
		variables , partial and	harmonic functions, directional derivatives,	
		full derivatives,	Taylor's formula, maxima and minima of	
		derivatives of composite	functions, Lagrange's multipliers.	
		functions, Euler's	UNIT-II	
		theorem on	Asymptotes and curvature: Rolle's	

	homogeneous functions,	Theorem, Cauchy's mean value theorem,
	harmonic functions,	Taylor and Maclaurin theorems, concavity
	directional derivatives,	and convexity of a curve, points of inflexion,
	Taylor's formula,	asymptotes and curvature.
	maxima and minima of	
	functions, Lagrange's	
	multipliers.	
UNIT-II	multipliers.	UNIT-III
	Asymptotes and	Analytical functions: Limit, continuity and
	curvature: Rolle's	differentiability of analytic functions,
	Theorem, Cauchy's	Cauchy-Reimann equations, complex
	mean value theorem,	functions, line integrals, Cauchy's integral
	Taylor and Maclaurin	theorem, Cauchy's integral formula, power
	theorems, concavity and	series, zeroes and singularity, residue
	convexity of a curve,	theorem.
	points of inflexion,	UNIT-IV
	-	
	asymptotes and	Integral calculus: Definite integral as limit of
	curvature.	sum, properties of definite integrals, mean
UNIT-III	Analytical functions:	value theorem, fundamental theorem,
		evaluation of definite integrals, reduction
	Limit, continuity and differentiability of	formula.
		UNIT-V
	•	
	Cauchy-Reimann	Differential equations: Order and degree of
	equations, complex	a differential equation, general and particular solutions, solution of differential
	functions, line integrals,	equations by separation of variables
	Cauchy's integral theorem, Cauchy's	method, integrating factor method, homogeneous differential equations of first
		order and their solutions, solution of linear
	integral formula, power series, zeroes and	differential equation $dy/dx+f(x)y=Q(x)$ and their application in electrical, nuclear and
		mechanical systems.
	singularity, residue theorem.	
UNIT-IV	Integral	
	Integral calculus:	
	Definite integral as limit	
	of sum, properties of	
	definite integrals, mean	
	value theorem, fundamental theorem,	
	fundamental theorem,	

		evaluation of definite		
		integrals, reduction		
		formula.		
		UNIT-V		
		Differential equations:		
		Order and degree of a		
		differential equation,		
		general and particular		
		solutions, solution of		
		differential equations by		
		separation of variables		
		method, integrating		
		factor method,		
		homogeneous		
		differential equations of		
		first order and their		
		solutions, solution of		
		linear differential		
		equation $dy/dx+f$		
		(x)y=Q(x) and their		
		application in electrical,		
		nuclear and mechanical		
		systems.		
4	<u>BT104</u>		Introduction to Electrical and Electronic	No Change
		Introduction to Electrical and Electronic	Engineering	
		Engineering	UNIT-I	
		UNIT-I	Basic Electrical Quantities: Electromotive	
		Basic Electrical	force, Electric Power ,Charge, current,	
		Quantities:	voltage, Energy, Electric potential and field,	
		Electromotive force,	magnetic flux, resistance, capacitance and	
		Electric Power ,Charge,	inductance. Ohm's law, Voltage and current	
		current, voltage,	sources.	
		Energy, Electric potential	UNIT-II	
		and field, magnetic	Network analysis: Circuit principles,	
		flux,resistance,	Kirchoff's Laws, Node Voltage and Mesh	
		capacitance and	Current Analysis;Delta-Star and Star-Delta	
		inductance. Ohm's law,	Transformation, Source Conversion.	
		Voltage and current	Classification of Network Elements,	

	sources.	Superposition Theorem, Thevenin's
UNIT-II		Theorem.Norton Theorem.,MaximumPower
	Network analysis:	Transfer Theorems.
	Circuit principles,	UNIT-III
	Kirchoff's Laws, Node	AC circuits: Alternating
	Voltage and Mesh	Quanitities, Introduction, Generation of AC
	Current Analysis;Delta-	Voltages, Root Mean Square and Average
	Star and Star-Delta	Value of Alternating Currents and Voltages,
	Transformation, Source	Form Factor and Peak Factor, Phasor
	Conversion.	Representation of Alternating Quantities,
	Classification of Network	Single Phase RLC Circuits, Introduction to 3-
	Elements, Superposition	Phase
	Theorem, Thevenin's	AC System.Power in a circuit, reactive
	Theorem.Norton	power, power factor, impedance in ac
	Theorem.,MaximumPow	circuit, series and parallel resonance, Q
	er Transfer Theorems.	factor, Introduction to 3-Phase
UNIT-III		AC System.
	AC circuits: Alternating	UNIT-IV
	Quanitities, Introduction,	Transformers: Faraday's Law of
	Generation of AC	Electromagnetic Induction Basic principle of
	Voltages, Root Mean	operation of transformer, construction,
	Square and Average	working, voltage and current relations,
	Value of Alternating	Phasor Diagram of Ideal Transformer.open
	Currents and Voltages,	circuit and short circuit test, transformer
	Form Factor and Peak	losses and efficiency, ferrite core
	Factor, Phasor	transformers. Electrical DC Machine:
	Representation of	Principle of DC Machines, Types, Different
	Alternating Quantities,	Parts of DC Machines
	Single Phase RLC	
	Circuits, Introduction to	UNIT-V
	3-Phase	Power Supplies: Half wave, full wave and
	AC System.Power in a	bridge rectifiers, ripple factor and reduction
	circuit, reactive power,	by use of inductor, capacitor, L and pie
	power factor,	section filters, voltage regulation using
	impedance in ac circuit,	Zener diode.
	series and parallel	
	resonance, Q factor,	
	Introduction to 3-Phase	
	AC System.	

		UNIT-IV		
		Transformers: Faraday's		
		Law of Electromagnetic		
		Induction Basic principle		
		of operation of		
		transformer,		
		construction, working,		
		voltage and current		
		relations, Phasor		
		Diagram of Ideal		
		Transformer.open circuit		
		and short circuit test,		
		transformer losses and		
		efficiency, ferrite core		
		transformers. Electrical		
		DC Machine: Principle of		
		DC Machines, Types,		
		Different Parts of DC		
		Machines		
		UNIT-V		
		Power Supplies: Half		
		wave, full wave and		
		bridge rectifiers, ripple		
		factor and reduction by		
		use of		
		inductor,capacitor, L and		
		pie section filters,		
		voltage regulation using		
		Zener diode.		
5	<u>BT105</u>	English and Communication Skills	English and Communication Skills	No Change
		UNIT –I	UNIT –I	
		<u>Grammar</u> and	Grammar and Vocabulary: Basic	
		<u>Vocabulary</u> : Basic	sentence pattern, use of tense, modals,	
		sentence pattern, use of	active and passive voice, Direct and Indirect	
		tense, modals, active	Speech, One word substitution, Synonyms	
		and passive voice, Direct	and Antonyms and Common Erros in English.	
		and Indirect Speech,	UNIT-II	

		Dhanatian IDA symbols Correct	
	One word substitution,	Phonetics: IPA symbols, Correct	
	Synonyms and	pronunciation of commonly used words,	
	Antonyms and Common	sounds (vowel and consonants)	
	Erros in English.	UNIT-III	
UNIT-II		Literature : Poetry : where the mind is	
	Phonetics: IPA symbols,	without fear – Rabindra Nath Tagore,	
	Correct pronunciation of	Mending wall – Robert Frost, Night of	
	commonly used words,	Scorpion – Nissim Ezekiel	
	sounds (vowel and	Essays: of studies: Francis Bascon, what is	
	consonants)	science? George Orwell.	
UNIT-III			
	<u>Literature</u> : Poetry :	UNIT-IV	
	where the mind is	Writing skills : Paragraph writing, Letter	
	without fear – Rabindra	writing, covering letter and C.V., Writing E-	
	Nath Tagore, Mending	mails.	
	wall – Robert Frost,		
	Night of Scorpion –	UNIT-V	
	Nissim Ezekiel	Fundamentals of Communication: (A)	
	Essays: of studies:	Communication: definition and meaning of	
	Francis Bascon, what is	communication, functions of	
	science? George Orwell.	communication, process of communication.	
UNIT-IV		(B) Types of communication: Verbal and Non	
	Writing skills :	verbal communication, Formal and informal	
	Paragraph writing, Letter	communication.	
	writing, covering letter	(C) Barriers to communication, qualities of	
	and C.V., Writing E-	good communication, the art of listening.	
	mails.		
UNIT-V			
	Fundamentals of		
	<u>Communication</u> : (A)		
	Communication:		
	definition and meaning		
	of communication,		
	functions of		
	communication,		
	process of		
	communication.		
	(B) Types of		
	communication: Verbal		

		and Non verbal		
		communication, Formal		
		and informal		
		communication.		
		(C) Barriers to		
		communication,		
		qualities of good		
		communication, the art		
		of listening.		
6	<u>BT106</u>	Engineering Chemistry	Engineering Chemistry	No Change
		UNIT -I		8
		Water:	UNIT -I	
		The sources of water,	Water: The sources of water, common	
		common Impurities,	Impurities, soft and hard water, Hardness of	
		soft and hard water,	water, degrees of hardness and its effects,	
		Hardness of water,	determination of hardness by various	
		degrees of hardness	techniques, Municipal Water supply,	
		and its effects,	requisites of drinking water, purification of	
		determination of	water by sedimentation, filtration, reverse	
		hardness by various	osmosis (RO), sterilization, chlorination.	
		techniques, Municipal	Water for boilers, corrosion, sludge and	
		Water supply,	scale formation, caustic embitterment,	
		requisites of drinking	treatment by preheating, lime-soda process,	
		water, purification of	permutit de-ionizer or demineralization.	
		water by		
		, sedimentation,	UNIT- II	
		filtration, reverse		
		osmosis (RO),		
		sterilization,	conductance in electrolytic solutions,	
		chlorination. Water for	specific and molar conductivity variations of	
		boilers, corrosion,	conductivity with concentration,	
		sludge and scale	Kohlrausch's Law, electrolysis and laws of	
		formation, caustic	electrolysis (elementary idea), dry cell –	
		embitterment,	electrolytic cells and Galvanic cells; lead	
		treatment by	accumulator, EMF of a cell, standard	
		preheating, lime-soda	electrode potential, Nernst equation and its	
		process, permutit de-	application to chemical cells. Relation	
		ionizer or	between Gibbs energy change and EMF of a	
		demineralization.	cell, fuel cells; corrosion.	

UNIT- II		Analysis: Volumetric Analysis, Types of
	Electrochemistry:	titrations, Theory of indicators.
	Redox reactions;	Spectral Analysis: Electromagnetic
	conductance in	radiation, Lambert-Beer's Law, UV-VIS, IR,
	electrolytic solutions,	NMR instrumentation & applications.
	specific and molar	Thermal Methods of Analysis: principle,
	conductivity variations	working and applications of
	of conductivity with	Thermogravimetry, Differential thermal
	concentration,	analysis and Differential scanning
	Kohlrausch's Law,	calorimetry.
	electrolysis and laws of	UNIT- III
	electrolysis	Fuels: The need of fuel, origin and
	(elementary idea), dry	classification of fuels, Solid fuels, coal and its
	cell – electrolytic cells	constituents, calorific value and its
	and Galvanic cells; lead	determination, coke: carbonization process,
	accumulator, EMF of a	various types of coke ovens.
	cell, standard electrode	Liquid Fuels: advantages, petroleum and its
	potential, Nernst	refining, synthetic petrol, reforming of
	equation and its	gasoline, knocking, octane number and anti
	application to chemical	knocking agents, cracking. Gaseous Fuels
	cells. Relation between	advantages, composition and calorific value
	Gibbs energy change	of coal gas and oil gas and its determination.
	and EMF of a cell, fuel	Lubricants: Need of Classification, types of
	cells; corrosion.	lubricants, their properties and uses,
	Analysis: Volumetric	lubricants, viscosity and viscosity index and
	Analysis, Types of	flash points, cloud and pour point,
	titrations, Theory of	emulsification
	indicators.	UNIT- IV
	Spectral Analysis:	Phase Rule: Statement, definition of terms
	Electromagnetic	involved, application to one component
	radiation, Lambert-	system (water-sulphur system), two
	Beer's Law, UV-VIS, IR, NMR instrumentation	component systems (Ag-Pbsystems).
		Polymers: Plastics, preparation, properties
	& applications. Thermal Methods of	and uses of polyethylene, bakelite, terylene
	Analysis: principle,	and nylon, Rubber; natural rubber, synthetic
	working and	rubber such as butyl and neoprene rubbers,
	applications of	vulcanization process
	Thermogravimetry,	and its advantages.
	Differential thermal	Corrosion: its significance, theories of

	analysis and	corrosion, Galvanic cell and concentration
	Differential scanning	
	-	cell, pitting and stress corrosion, protection
UNIT- III	calorimetry.	techniques.
	<u>Fuels:</u> The need of fuel,	
	origin and classification	Explosives: Introduction, classification of
	of fuels, Solid fuels,	explosives, preparation of commercially
	coal and its	important explosives, blasting fuses, uses
	constituents, calorific	and abuses of explosives.
	value and its	<u>Cement:</u> properties, Portland cement and its
	determination, coke:	manufacture, chemistry of setting and
	carbonization process,	hardening of cement, RCC structures.
	various types of coke	Refractories: definition, classification,
	ovens.	properties of silica and fireclay refractories,
	<u>Liquid Fuels:</u>	Glass: preparation, properties and uses.
	advantages, petroleum	
	and its refining,	
	synthetic petrol,	
	reforming of gasoline,	
	knocking, octane	
	number and anti	
	knocking agents,	
	cracking. Gaseous Fuels	
	advantages,	
	composition and	
	calorific value of coal	
	gas and oil gas and its	
	determination.	
	Lubricants: Need of	
	Classification, types of	
	lubricants, their	
	properties and uses,	
	lubricants, viscosity and	
	viscosity index and	
	flash points, cloud and	
	pour point,	
	emulsification	
UNIT- IV		
	Phase Rule: Statement,	

definition of terms	
involved, application to	
one component system	
(water-sulphur system),	
two component	
systems (Ag-	
Pbsystems).	
Polymers: Plastics,	
preparation, properties	
and uses of	
polyethylene, bakelite,	
terylene and nylon,	
Rubber; natural rubber,	
synthetic rubber such	
as butyl and neoprene	
rubbers, vulcanization	
process	
and its advantages.	
Corrosion: its	
significance, theories of	
corrosion, Galvanic cell	
and concentration cell,	
pitting and stress	
corrosion, protection	
techniques.	
Explosives:	
Introduction,	
classification of	
explosives, preparation	
of commercially	
important explosives,	
blasting fuses, uses and	
abuses of explosives.	
•	
<u>Cement:</u> properties,	
Cement: properties,	
	 involved, application to one component system (water-sulphur system), two component systems (Ag- Pbsystems). Polymers: Plastics, preparation, properties and uses of polyethylene, bakelite, terylene and nylon, Rubber; natural rubber, synthetic rubber such as butyl and neoprene rubbers, vulcanization process and its advantages. Corrosion; its significance, theories of corrosion, Galvanic cell and concentration cell, pitting and stress corrosion, protection techniques. Explosives: Introduction, classification of explosives, preparation of commercially important explosives, blasting fuses, uses and

		and hardening of		
		cement, RCC		
		structures.		
		Refractories: definition,		
		classification,		
		properties of silica and		
		fireclay refractories,		
		Glass: preparation,		
		properties and uses.		
_				
7	<u>BT107</u>	Electrical and Electronics Lab-I	Electrical and Electronics Lab-	No Change
		List of Experiments		
		1. Identification, Study & Testing of	List of Experiments	
		various electronic components:		
		(a) Resistances-Various types, Colour	1. Identification, Study & Testing of	
		coding (b) Capacitors-Various types,	various electronic components:	
		Coding, (c) Inductors	(a) Resistances-Various types, Colour	
		(d) Diodes (e) Transistors (f) SCRs	coding (b) Capacitors-Various types,	
		(g) ICs (h) Photo diode (i) Photo	Coding, (c) Inductors	
		transistor (j) LED (k) LDR	(d) Diodes (e) Transistors (f) SCRs (g)	
		(I) Potentiometers.	ICs (h) Photo diode (i) Photo transistor	
		2. Study of symbols for various	(j) LED (k) LDR	
		Electrical & Electronic Components,	(I) Potentiometers.	
		Devices, Circuit functions etc.	2. Study of symbols for various Electrical	
		3. Study of Analog & digital multi-	& Electronic Components, Devices,	
		meters.	Circuit functions etc.	
		4. Study of Function/ Signal	3. Study of Analog & digital multi-	
		generators.	meters.	
		5. Study of Regulated d. c. power	4. Study of Function/ Signal generators.	
		supplies (constant voltage and	5. Study of Regulated d. c. power	
		constant current operations).	supplies (constant voltage and constant	
		6. Study of analog CRO, measurement	current operations).	
		of time period, amplitude and	6. Study of analog CRO, measurement	
		frequency.	of time period, amplitude and	
		7. Perform half wave rectifier	frequency.	
		experiment and effect of filters on	7. Perform half wave rectifier	
		output.	experiment and effect of filters on	
		8. Perform bridge rectifier experiment	output.	
		and measure the effect of filter	8. Perform bridge rectifier experiment	

		output.	and measure the effect of filter output.	
		9. Application of diode as clipper and	9. Application of diode as clipper and	
		clamper.	clamper.	
		10. Soldering & desoldering practice.	10. Soldering & desoldering practice.	
8	<u>BT108</u>	Engineering Physics Lab-I	Engineering Physics Lab-L	No Change
		List of Experiments	List of Experiments	
		1. To study the charging of a		
		condenser to plot a graph of	1. To study the charging of a	
		voltage (V) across it against	condenser to plot a graph of	
		time (T) and to determine	voltage (V) across it against time (T)	
		the time constant from this	and to determine the time constant	
		graph	from this graph	
		2. To study the discharging of a	2. To study the discharging of a	
		condenser to plot a graph of	condenser to plot a graph of	
		voltage (V) across it against	voltage (V) across it against time (T)	
		time (T) and to determine	and to determine the time constant	
		the time constant from this	from this graph.	
		graph.		
			3. To determine the specific	
		3. To determine the specific	resistance of a material and	
		resistance of a material and	difference between two small	
		difference between two	resistances using "Carey Foster's	
		small resistances using	Bridge ".	
		"Carey Foster's Bridge ".	4. To determine band gap of a	
		4. To determine band gap of a	semiconductor- diode.	
		semiconductor- diode.	5. To study the Zener diode as a	
		5. To study the Zener diode as a	constant voltage regular.	
		constant voltage regular.	6. To verify Malus Law (Cosine square	
		6. To verify Malus Law (Cosine	law) for plane polarized light with	
		square law) for plane	the help of a Photo voltaic cell.	
		polarized light with the help	7. To determine the transmission	
		of a Photo voltaic cell.	coefficient by using Lummer	
		7. To determine the	Brodhum Photometer.	
		transmission coefficient by	8. To determine minimum deviation	
		, using Lummer Brodhum	angle for different light using prism	
		Photometer.	and spectrometer.	
		8. To determine minimum	9. To determine the profile of He -Ne	
		deviation angle for different	Laser beam.	

10	<u>BT110</u>	 System utilities of windows. Understanding and Working knowledge of Linux/Unix OS. Understanding of File system of Linux. Creating user and group. Understanding and Working knowledge of MS Office, Power Point and Excel: Editing and Reviewing, Drawing, Tables, Graphs, Templates. 	 Internal and External commands of DOS. System utilities of windows. Understanding and Working knowledge of Linux/Unix OS. Understanding of File system of Linux. Creating user and group. Understanding and Working knowledge of MS Office, Power Point and Excel: Editing and Reviewing, Drawing, Tables, Graphs, Templates. Engineering Chemistry Lab	No Change
		 System utilities of windows. Understanding and Working knowledge of Linux/Unix OS. Understanding of File system of Linux. Creating user and group. Understanding and Working knowledge of MS Office, Power Point and Excel: Editing and Reviewing, Drawing, Tables, Graphs, 	 DOS. 4. System utilities of windows. 5. Understanding and Working knowledge of Linux/Unix OS. 6. Understanding of File system of Linux. 7. Creating user and group. 8. Understanding and Working knowledge of MS Office, Power Point and Excel: Editing and Reviewing, Drawing, Tables, 	
	LIS	 Dismantling a PC Part -1. Dismantling a PC Part -2. Internal and External commands of DOS. 	 LIST OF EXPERIMENTS 1. Dismantling a PC Part -1. 2. Dismantling a PC Part -2. 	
9	<u>BT109</u>	light using prism and spectrometer.9.To determine the profile of He -Ne Laser beam.10.To study the variation of thermo e.m.f. of iron copper thermo couple with temperature.11.To determine the wavelength of sodium light using Michelson Interferometer.12.To determine the curie temperature of Monel metal13.The determination of viscosity.	 To study the variation of thermo e.m.f. of iron copper thermo couple with temperature. To determine the wavelength of sodium light using Michelson Interferometer. To determine the curie temperature of Monel metal The determination of viscosity. 	No Change

. <u> </u>					
	1.	To determine the	1.	To determine the strength of a given	
		strength of a given		unknown copper sulphate solution	
		unknown copper		(Iodometrically) with titrate Hypo	
		sulphate solution		(sodium thio sulphate) solution.	
		(Iodometrically) with	2.	To determine the strength of a given	
		titrate Hypo (sodium		unknown FAS solution with titrate	
		thio sulphate) solution.		potassium dichromate solution using N-	
	2.	To determine the		phenyl anthranilic acid (internal	
		strength of a given		indicator).	
		unknown FAS solution	2	To determine the strength of a siver	
		with titrate potassium	3.	To determine the strength of a given	
		dichromate solution		unknown potassium dichromate	
		using N-phenyl		solution (lodometrically) with titrate	
		anthranilic acid (internal		Hypo (sodium thio sulphate) solution.	
		indicator).	4.	Determine the percentage of available	
	3.	To determine the		chlorine in a given sample of bleaching	
		strength of a given		powder.	
		unknown potassium	5.	Determine the amount of free chlorine	
		dichromate solution		in a given water sample.	
		(lodometrically) with	E	To dotorming the viscosity and viscosity	
		titrate Hypo (sodium	6.	To determine the viscosity and viscosity index of a given sample of lubricating oil	
	A	thio sulphate) solution.		- · ·	
	4.	Determine the		using Redwood viscometer No.1	
		percentage of available	7.	To determine the flash and fire point of	
		chlorine in a given		a given sample of lubricating oil using	
		sample of bleaching powder.		Pensky Marten's apparatus.	
	5.	powder. Determine the amount	8.	Determine the cloud and pour point of a	
	5.	of free chlorine in a		given sample of lubricating oil.	
		given water sample.	9.	Determination of hardness of water by	
	6.	To determine the	9.	complexometric method (using EDTA).	
	0.	viscosity and viscosity			
		index of a given sample	10.	Determine the pH of an acid (strength	
		of lubricating oil using		of an acid) pH – metrically.	
		Redwood viscometer	11.	Determine the strength of a given	
		No.1		unknown HCl solution by titrating it	
	7.	To determine the flash		against NaOH solution (Conductometric	
		and fire point of a given		analysis).	
		sample of lubricating oil	12	To estimation the amount of sodium	

		using Pensky Marten's	hydroxide and sodium carbonate in the	[]
		apparatus.	given alkali mixture solution (or in water	
		8. Determine the cloud and		
			sample) by titrating against an	
		pour point of a given	intermediate hydrochloric acid using	
		sample of lubricating oil.	phenolphthalein and methyl orange	
		9. Determination of	indicator.	
		hardness of water by		
		complexometric method		
		(using EDTA).		
		10. Determine the pH of an		
		acid (strength of an acid		
) pH – metrically.		
		, pri metreary.		
		11. Determine the strength		
		of a given unknown HCl		
		solution by titrating it		
		against NaOH solution (
		Conductometric analysis		
).		
		12. To estimation the		
		amount of sodium		
		hydroxide and sodium		
		carbonate in the given		
		alkali mixture solution		
		(or in water sample) by		
		titrating against an		
		intermediate		
		hydrochloric acid using		
		phenolphthalein and		
		methyl orange indicator.		
11	<u>BT111</u>	Engineering workshop	Engineering workshop	No Change
		FITTING AND SHEET METAL	FITTING AND SHEET METAL SHOP	
		SHOP		
		1. Finishing of two sides of a	1. Finishing of two sides of a square piece	
		square piece by filing and to cut a	by filing and to cut a Square notch using	
		Square notch using hacksaw.	hacksaw.	
		2. To drill three holes and	2. To drill three holes and Tapping on the	
		Tapping on the given specimen.	given specimen.	
		3. Tin smithy for making	3. Tin smithy for making mechanical joint	

		mechanical joint and soldering of	and soldering of joint	
		joint		
			WELDING SHOP	
		WELDING SHOP		
		4. To prepare Lap Joint with the	4. To prepare Lap Joint with the help of Arc	
		help of Arc welding	welding	
		5. To prepare Butt Joint with the	5. To prepare Butt Joint with the help of arc	
		help of arc Welding	Welding	
		6. Gas welding practice by	6. Gas welding practice by students on mild	
		students on mild steel flat	steel flat	
		MACHINE SHOP PRACTICE	MACHINE SHOP PRACTICE	
		7. Job on lathe M/C with	7. Job on lathe M/C with centering and one	
		centering and one step turning	step turning	
		8. Job on lathe M/C with	8. Job on lathe M/C with grooving and	
		grooving and chamfering	chamfering operations	
		operations		
12	BT201	Engineering Physics II	Engineering Physics II	No Change
	<u>D1201</u>			No Change
	<u>D1201</u>	UNIT-I	UNIT-I	No Change
	<u>D1201</u>	UNIT-I <u>Electric and Magnetic</u>	UNIT-I <u>Electric and Magnetic Fields</u> :Coulomb's	No Change
		UNIT-I <u>Electric and Magnetic</u> <u>Fields</u> :Coulomb's law,	UNIT-I <u>Electric and Magnetic Fields</u> :Coulomb's law, Gauss's law, electrostatic potential	No Change
		UNIT-I <u>Electric and Magnetic</u> <u>Fields</u> :Coulomb's law, Gauss's law,	UNIT-I Electric and Magnetic Fields :Coulomb's law, Gauss's law, electrostatic potential and field due to discrete and continuous	No Change
		UNIT-I <u>Electric and Magnetic</u> <u>Fields</u> :Coulomb's law, Gauss's law, electrostatic potential	UNIT-I Electric and Magnetic Fields :Coulomb's law, Gauss's law, electrostatic potential and field due to discrete and continuous charge distributions, dipole and	No Change
		UNIT-I <u>Electric and Magnetic</u> <u>Fields</u> :Coulomb's law, Gauss's law,	UNIT-I <u>Electric and Magnetic Fields</u> :Coulomb's law, Gauss's law, electrostatic potential and field due to discrete and continuous charge distributions, dipole and quadrupole moments, dielectric	No Change
		UNIT-I <u>Electric and Magnetic</u> <u>Fields</u> :Coulomb's law, Gauss's law, electrostatic potential and field due to discrete and	UNIT-I <u>Electric and Magnetic Fields</u> :Coulomb's law, Gauss's law, electrostatic potential and field due to discrete and continuous charge distributions, dipole and quadrupole moments, dielectric polarization, electrostatic energy,	No Change
		UNIT-I <u>Electric and Magnetic</u> <u>Fields</u> :Coulomb's law, Gauss's law, electrostatic potential and field due to	UNIT-I Electric and Magnetic Fields :Coulomb's law, Gauss's law, electrostatic potential and field due to discrete and continuous charge distributions, dipole and quadrupole moments, dielectric polarization, electrostatic energy, conductors and capacitors, Biot-Savart	No Change
		UNIT-I <u>Electric and Magnetic</u> <u>Fields</u> :Coulomb's law, Gauss's law, electrostatic potential and field due to discrete and	UNIT-I Electric and Magnetic Fields :Coulomb's law, Gauss's law, electrostatic potential and field due to discrete and continuous charge distributions, dipole and quadrupole moments, dielectric polarization, electrostatic energy, conductors and capacitors, Biot-Savart law, Ampere's law, magnetic induction due	No Change
		UNIT-I <u>Electric and Magnetic</u> <u>Fields</u> :Coulomb's law, Gauss's law, electrostatic potential and field due to discrete and continuous charge	UNIT-I Electric and Magnetic Fields :Coulomb's law, Gauss's law, electrostatic potential and field due to discrete and continuous charge distributions, dipole and quadrupole moments, dielectric polarization, electrostatic energy, conductors and capacitors, Biot-Savart law, Ampere's law, magnetic induction due to current carrying conductors, force on a	No Change
		UNIT-I <u>Electric and Magnetic</u> <u>Fields</u> :Coulomb's law, Gauss's law, electrostatic potential and field due to discrete and continuous charge distributions, dipole	UNIT-I Electric and Magnetic Fields :Coulomb's law, Gauss's law, electrostatic potential and field due to discrete and continuous charge distributions, dipole and quadrupole moments, dielectric polarization, electrostatic energy, conductors and capacitors, Biot-Savart law, Ampere's law, magnetic induction due to current carrying conductors, force on a charged particle in electric and magnetic	No Change
		UNIT-I <u>Electric and Magnetic</u> <u>Fields</u> :Coulomb's law, Gauss's law, electrostatic potential and field due to discrete and continuous charge distributions, dipole and quadrupole	UNIT-I Electric and Magnetic Fields :Coulomb's law, Gauss's law, electrostatic potential and field due to discrete and continuous charge distributions, dipole and quadrupole moments, dielectric polarization, electrostatic energy, conductors and capacitors, Biot-Savart law, Ampere's law, magnetic induction due to current carrying conductors, force on a charged particle in electric and magnetic field, Faraday's law of electromagnetic	No Change
		UNIT-I Electric and Magnetic Fields :Coulomb's law, Gauss's law, electrostatic potential and field due to discrete and continuous charge distributions, dipole and quadrupole moments, dielectric	UNIT-I Electric and Magnetic Fields :Coulomb's law, Gauss's law, electrostatic potential and field due to discrete and continuous charge distributions, dipole and quadrupole moments, dielectric polarization, electrostatic energy, conductors and capacitors, Biot-Savart law, Ampere's law, magnetic induction due to current carrying conductors, force on a charged particle in electric and magnetic field, Faraday's law of electromagnetic induction.	No Change
		UNIT-I Electric and Magnetic Fields :Coulomb's law, Gauss's law, electrostatic potential and field due to discrete and continuous charge distributions, dipole and quadrupole moments, dielectric polarization,	UNIT-I Electric and Magnetic Fields :Coulomb's law, Gauss's law, electrostatic potential and field due to discrete and continuous charge distributions, dipole and quadrupole moments, dielectric polarization, electrostatic energy, conductors and capacitors, Biot-Savart law, Ampere's law, magnetic induction due to current carrying conductors, force on a charged particle in electric and magnetic field, Faraday's law of electromagnetic induction. UNIT-II	No Change
		UNIT-I Electric and Magnetic Fields :Coulomb's law, Gauss's law, electrostatic potential and field due to discrete and continuous charge distributions, dipole and quadrupole moments, dielectric polarization, electrostatic energy,	UNIT-I Electric and Magnetic Fields :Coulomb's law, Gauss's law, electrostatic potential and field due to discrete and continuous charge distributions, dipole and quadrupole moments, dielectric polarization, electrostatic energy, conductors and capacitors, Biot-Savart law, Ampere's law, magnetic induction due to current carrying conductors, force on a charged particle in electric and magnetic field, Faraday's law of electromagnetic induction. UNIT-II Thermodynamics: Work-	No Change
		UNIT-I Electric and Magnetic Fields :Coulomb's law, Gauss's law, electrostatic potential and field due to discrete and continuous charge distributions, dipole and quadrupole moments, dielectric polarization, electrostatic energy, conductors and	UNIT-I Electric and Magnetic Fields :Coulomb's law, Gauss's law, electrostatic potential and field due to discrete and continuous charge distributions, dipole and quadrupole moments, dielectric polarization, electrostatic energy, conductors and capacitors, Biot-Savart law, Ampere's law, magnetic induction due to current carrying conductors, force on a charged particle in electric and magnetic field, Faraday's law of electromagnetic induction. UNIT-II Thermodynamics: Work- Thermodynamic definition of work,	No Change
		UNIT-I Electric and Magnetic Fields :Coulomb's law, Gauss's law, electrostatic potential and field due to discrete and continuous charge distributions, dipole and quadrupole moments, dielectric polarization, electrostatic energy, conductors and capacitors, Biot-Savart	UNIT-I Electric and Magnetic Fields :Coulomb's law, Gauss's law, electrostatic potential and field due to discrete and continuous charge distributions, dipole and quadrupole moments, dielectric polarization, electrostatic energy, conductors and capacitors, Biot-Savart law, Ampere's law, magnetic induction due to current carrying conductors, force on a charged particle in electric and magnetic field, Faraday's law of electromagnetic induction. UNIT-II Thermodynamics: Work- Thermodynamic definition of work, examples, displacement work, path	No Change
		UNIT-I Electric and Magnetic Fields :Coulomb's law, Gauss's law, electrostatic potential and field due to discrete and continuous charge distributions, dipole and quadrupole moments, dielectric polarization, electrostatic energy, conductors and capacitors, Biot-Savart law, Ampere's law,	UNIT-I Electric and Magnetic Fields :Coulomb's law, Gauss's law, electrostatic potential and field due to discrete and continuous charge distributions, dipole and quadrupole moments, dielectric polarization, electrostatic energy, conductors and capacitors, Biot-Savart law, Ampere's law, magnetic induction due to current carrying conductors, force on a charged particle in electric and magnetic field, Faraday's law of electromagnetic induction. UNIT-II Thermodynamics: Work- Thermodynamic definition of work, examples, displacement work, path dependence of displacement work, path	No Change
		UNIT-I Electric and Magnetic Fields :Coulomb's law, Gauss's law, electrostatic potential and field due to discrete and continuous charge distributions, dipole and quadrupole moments, dielectric polarization, electrostatic energy, conductors and capacitors, Biot-Savart law, Ampere's law, magnetic induction due	UNIT-I Electric and Magnetic Fields :Coulomb's law, Gauss's law, electrostatic potential and field due to discrete and continuous charge distributions, dipole and quadrupole moments, dielectric polarization, electrostatic energy, conductors and capacitors, Biot-Savart law, Ampere's law, magnetic induction due to current carrying conductors, force on a charged particle in electric and magnetic field, Faraday's law of electromagnetic induction. UNIT-II Thermodynamics: Work- Thermodynamic definition of work, examples, displacement work, path	No Change

	charged particle in	interaction systems , First law and its	
	electric and magnetic	consequences, isothermal and adiabatic	
	field, Faraday's law of	processes, reversible, irreversible and	
	electromagnetic	quasi-static processes. Second law and	
	induction.	entropy. Carnot engine and cycle. Absolute	
UNIT-II		temperature scale.	
	Thermodynamics:	UNIT-III	
	Work-	<u>Optical phenomena</u> : Principle of	
	Thermodynamic	superposition, coherent and incoherent	
	definition of work,	sources, temporal and spatial coherence,	
	examples,	interference phenomena(Newton's ring	
	displacement work,	and Michelson interferometer),	
	path dependence of	diffraction of waves, diffraction from	
	displacement work,	single and diffraction grating, polarization	
	thermal equilibrium,	: types of polarization , Malus law, quarter	
	Zeroth law , definition	and half wave plates, optical activity,	
	of temperature,	specific rotation.	
	heat/work interaction	UNIT-IV	
	systems , First law and	Lasers and Holography :	
	its consequences,	Spontaneous and stimulated emission (Einstein A and B coefficients),	
	isothermal and	population inversion, basic principles of	
	adiabatic processes,	operation of He-Ne, Ruby and	
	reversible, irreversible	semiconductor lasers. <u>Optical Fibers</u> :	
	and quasi-static	Types of optical fibers and their	
	processes. Second law	characteristics, characteristics of step,	
	and entropy. Carnot	graded , mono mode and multi mode	
	engine and cycle.	fibers, numerical aperture and its	
	Absolute temperature	measurement, fiber optical	
	scale.	communication. Principles and	
UNIT-III		applications of holography	
	Optical phenomena :	UNIT-V	
	Principle of	Magnetic Materials: Magnetization-	
	superposition,	origin of magnetic moment, classification	
	coherent and	of magnetic materials- die, Para and	
	incoherent sources,	ferromagnetism, hysteresis curve, soft and	
	temporal and spatial	hard magnetic materials.	
	coherence,	Superconductivity: General properties of	
	interference	superconductors, Meissonier effect,	
	phenomena(Newton's	penetration depth, type I and Type II	

	ring and Michelson	superconductors, flux quantization,	
	interferometer),	magnetic levitation, high temperature	
	diffraction of waves,	superconductors, superconducting	
	diffraction from single	materials, Cooper pairs and postulates of	
	and diffraction grating,	BCS theory.	
	polarization : types of		
	polarization , Malus		
	law, quarter and half		
	wave plates, optical		
	activity, specific		
	rotation.		
UNIT-IV			
	Lasers and Holography		
	: Spontaneous		
	and stimulated		
	emission (Einstein A		
	and B coefficients),		
	population inversion,		
	basic principles of		
	operation of He-Ne,		
	Ruby and		
	semiconductor lasers.		
	Optical Fibers : Types		
	of optical fibers and		
	their characteristics,		
	characteristics of step,		
	graded , mono mode		
	and multi mode fibers,		
	numerical aperture and		
	its measurement, fiber		
	optical communication.		
	Principles and		
	applications of		
	holography		
UNIT-V			
	Magnetic Materials:		
	Magnetization- origin		
	of magnetic moment,		
	classification of		

	1 1		magnotic matariala		
			magnetic materials-		
			die, Para and		
			ferromagnetism,		
			hysteresis curve, soft		
			and hard magnetic		
			materials.		
			Superconductivity:		
			General properties of		
			superconductors,		
			Meissonier effect,		
			penetration depth,		
			type I and Type II		
			superconductors, flux		
			quantization, magnetic		
			levitation, high		
			temperature		
			superconductors,		
			superconducting		
			materials, Cooper pairs		
			and postulates of BCS		
			theory.		
13	<u>BT202</u>		<u>ION TO COMPUTER</u> GRAMMING	<u>INTRODUCTION TO COMPUTER</u> <u>PROGRAMMING</u>	No Change
			Concept of algorithms,		
			Flow Charts, Overview	UNIT I	
			Flow Charts, Overview of the compiler	Concept of algorithms, Flow Charts,	
				Concept of algorithms, Flow Charts, Overview of the compiler (preferably GCC) ,	
			of the compiler (preferably GCC) ,	Concept of algorithms, Flow Charts, Overview of the compiler (preferably GCC) , Assembler, linker and loader , Structure of a	
			of the compiler (preferably GCC) , Assembler, linker and	Concept of algorithms, Flow Charts, Overview of the compiler (preferably GCC) , Assembler, linker and loader , Structure of a simple Hello World Program in C ,Overview	
			of the compiler (preferably GCC) ,	Concept of algorithms, Flow Charts, Overview of the compiler (preferably GCC) , Assembler, linker and loader , Structure of a simple Hello World Program in C ,Overview of compilation and execution process in an	
			of the compiler (preferably GCC) , Assembler, linker and loader , Structure of a simple Hello World	Concept of algorithms, Flow Charts, Overview of the compiler (preferably GCC) , Assembler, linker and loader , Structure of a simple Hello World Program in C ,Overview	
			of the compiler (preferably GCC) , Assembler, linker and loader , Structure of a	Concept of algorithms, Flow Charts, Overview of the compiler (preferably GCC) , Assembler, linker and loader , Structure of a simple Hello World Program in C ,Overview of compilation and execution process in an IDE (preferably Code Block)	
			of the compiler (preferably GCC) , Assembler, linker and loader , Structure of a simple Hello World Program in C ,Overview of compilation and	Concept of algorithms, Flow Charts, Overview of the compiler (preferably GCC) , Assembler, linker and loader , Structure of a simple Hello World Program in C ,Overview of compilation and execution process in an	
			of the compiler (preferably GCC) , Assembler, linker and loader , Structure of a simple Hello World Program in C ,Overview of compilation and execution process in an	Concept of algorithms, Flow Charts, Overview of the compiler (preferably GCC) , Assembler, linker and loader , Structure of a simple Hello World Program in C ,Overview of compilation and execution process in an IDE (preferably Code Block) UNIT II	
			of the compiler (preferably GCC) , Assembler, linker and loader , Structure of a simple Hello World Program in C ,Overview of compilation and execution process in an IDE (preferably Code	Concept of algorithms, Flow Charts, Overview of the compiler (preferably GCC) , Assembler, linker and loader , Structure of a simple Hello World Program in C ,Overview of compilation and execution process in an IDE (preferably Code Block) UNIT II Programming using C: Preprocessor	
		UNIT II	of the compiler (preferably GCC) , Assembler, linker and loader , Structure of a simple Hello World Program in C ,Overview of compilation and execution process in an	Concept of algorithms, Flow Charts, Overview of the compiler (preferably GCC) , Assembler, linker and loader , Structure of a simple Hello World Program in C ,Overview of compilation and execution process in an IDE (preferably Code Block) UNIT II Programming using C: Preprocessor Directive, C primitive input output using get	
		UNIT II	of the compiler (preferably GCC) , Assembler, linker and loader , Structure of a simple Hello World Program in C ,Overview of compilation and execution process in an IDE (preferably Code	Concept of algorithms, Flow Charts, Overview of the compiler (preferably GCC) , Assembler, linker and loader , Structure of a simple Hello World Program in C ,Overview of compilation and execution process in an IDE (preferably Code Block) UNIT II Programming using C: Preprocessor Directive, C primitive input output using get char and put char , simple I/O Function calls	
		UNIT II	of the compiler (preferably GCC) , Assembler, linker and loader , Structure of a simple Hello World Program in C ,Overview of compilation and execution process in an IDE (preferably Code	Concept of algorithms, Flow Charts, Overview of the compiler (preferably GCC) , Assembler, linker and loader , Structure of a simple Hello World Program in C ,Overview of compilation and execution process in an IDE (preferably Code Block) UNIT II Programming using C: Preprocessor Directive, C primitive input output using get	

1	Dreamaning wing C		
	Programming using C:	logical operations, conditional executing	
	Preprocessor Directive,	using if, else, switch and break .Concept of	
	C primitive input	loops , for, while and do-while , Storage	
	output using get char	Classes: Auto, Register, Static and Extern	
	and put char , simple		
	I/O Function calls from	UNIT III	
	library , data type in C		
	including enumeration,	Arrays and Strings: Declaring an array,	
	arithmetic, relational	Initializing arrays, accessing the array	
	and logical operations,	elements, working with multidimensional	
	conditional executing	arrays, declaring and initializing string	
	using if, else, switch	variables, arithmetic operations on	
	and break .Concept of	characters.	
	loops , for, while and	Pointers: Declaring and initializing pointers,	
	do-while , Storage	pointer expressions, pointer increment and	
	Classes: Auto, Register,	scale factor, pointers and arrays, pointers	
	Static and Extern	and strings.	
UNIT III			
		UNIT IV	
	Arrays and Strings:	Functions: Defining functions, passing	
	Declaring an array,	arguments to functions, returning values	
	Initializing arrays,	from functions, reference arguments,	
	accessing the array	variables and storage classes, static	
	elements, working with	functions, pointers and functions.	
	multidimensional	Structures: Declaring and initializing a	
	arrays, declaring and	structure, accessing the members of a	
	initializing string	structure, nested structures, array of	
	variables, arithmetic	structures, using structures in functions,	
	operations on	pointers and structures.	
	characters.		
	Pointers: Declaring and		
	initializing pointers,	UNIT V:	
	pointer expressions,	File Handling in C Using File Pointers, fopen(
	pointer increment and), fclose(), Input and Output using file	
	scale factor, pointers	pointers, Character Input and Output using me	
	-		
	and arrays, pointers	Files , String Input / Output Functions ,	
UNIT IV	and strings.	Formatted Input / Output Functions, Block Input / Output Functions, Sequential Vs	
		UNDUE / UNITOUT FUNCTIONS Sequential Vs	

		Random Access Files , Positioning the File	
		Pointer.	
	Functions: Defining		
	functions, passing		
	arguments to		
	functions, returning		
	values from functions,		
	reference arguments,		
	variables and storage		
	classes, static		
	functions, pointers and		
	functions.		
	Structures: Declaring		
	and initializing a		
	structure, accessing the		
	members of a		
	structure, nested		
	structures, array of		
	structures, using		
	structures in functions,		
	pointers and		
	structures.		
UNIT V:			
	File Handling in C Using		
	File Pointers, fopen(),		
	fclose(), Input and		
	Output using file		
	pointers, Character		
	Input and Output with		
	Files , String Input /		
	Output Functions ,		
	Formatted Input /		
	Output Functions,		
	Block Input / Output		
	Functions, Sequential		
	Vs Random Access Files		
	, Positioning the File		
	Pointer.		

14	BT303	ENGINE			No Chargo
14	<u>BT203</u>		RING MECHANICS	ENGINEERING MECHANICS	No Change
		Unit I	Former Customer		
			Force System: Introduction, force,	Unit I	
			principle of	Force System: Introduction, force,	
			transmissibility of	principle of transmissibility of force,	
			force, resultant of a	resultant of a force system, resolution of a	
			force system,	force, moment of force about a line.	
			resolution of a force,	Varigon's theorem, couple, resolution of	
			moment of force about a line. Varigon's		
			theorem, couple,	force into force and a couple, properties of	
			resolution of force into	couple and their application to engineering	
			force and a couple,	problems. Lami's theorem. Force body	
			properties of couple	diagram.	
			and their application to		
			engineering problems. Lami's theorem. Force	Unit II	
			body diagram.	Centroid & Moment of Inertia: Location of	
		Unit II		centroid and center of gravity, Moment of	
			Centroid & Moment of	inertia,	
			Inertia: Location of	Parallel axis and perpendicular axis theorem,	
			centroid and center of gravity, Moment of		
			inertia,	Radius of gyration, M.I of composite section,	
			Parallel axis and	Polar	
			perpendicular axis	Moment of inertia, Lifting Machines:	
			theorem, Radius of	Mechanical advantage, Velocity Ratio,	
			gyration, M.I of	Efficiency of machine, Ideal machine, Ideal	
			composite section, Polar	effort and ideal load, Reversibility of	
			Moment of inertia,	machine, Law of machine, Lifting machines;	
			Lifting Machines:	System of Pulleys, Wheel and differential	
			Mechanical advantage,	axle, differential pulley Block,	
			Velocity Ratio,		
			Efficiency of machine, Ideal machine, Ideal		
			effort and ideal load,		
			Reversibility of	Friction: Types of Friction, Laws of friction,	
			machine, Law of	Angle of friction, Angle of repose, Ladder,	
			machine, Lifting	Wedge,	
			machines; System of Bulleys, Wheel and	Belt Friction. Belt Drive: Types of belts,	
			Pulleys, Wheel and differential axle,	Types of belt drives, Velocity ratio, Effect of	
			differential pulley	slip on Velocity ratio, Length of belt, Ratio of	
			Block,	tensions and power transmission by flat belt	
		Unit III		drives.	
			Friction: Types of		
			Friction, Laws of		
			friction, Angle of		

r	•		
	friction, Angle of	Unit IV	
	repose, Ladder, Wedge,	Kinematics of Particles and Rigid Bodies:	
	Belt Friction. Belt Drive: Types of belts, Types of	Velocity, Acceleration, Types of Motion,	
	belt drives, Velocity	Equations of	
	ratio, Effect of slip on	Motion, Rectangular components of velocity	
	Velocity ratio, Length of		
	belt, Ratio of tensions	and acceleration, Angular velocity and	
	and power	Angular	
	transmission by flat	Acceleration, Radial and transverse	
	belt drives.	velocities and accelerations, Projectiles	
Unit IV	Kinematics of Particles	motion on plane and	
	and Rigid Bodies:	Inclined Plane, Relative Motion. Newton's	
	Velocity, Acceleration,	laws, Equation of motion in rectangular	
	Types of Motion,		
	Equations of	Coordinate, radial and transverse	
	Motion, Rectangular	components, Equation of motion in plane	
	components of velocity	for a rigid body,	
	and acceleration, Angular velocity and	D'Alembert principle.	
	Angular velocity and		
	Acceleration, Radial	Unit V	
	and transverse		
	velocities and	Work, Energy and Power: Work of a force,	
	accelerations,	weight, spring force and couple, Power,	
	Projectiles motion on	Efficiency,	
	plane and	Energy, Kinetic energy of rigid body,	
	Inclined Plane, Relative Motion. Newton's laws,	Principle of work and energy, Conservative	
	Equation of motion in	and Nonconservative Force, Conservation of	
	rectangular	energy.	
	Coordinate, radial and		
	transverse	Impulse and Momentum: Linear and angular	
	components, Equation	momentum, Linear and angular impulse,	
	of motion in plane for a	Principle	
	rigid body, D'Alembert principle.	of momentum for a particle and rigid body,	
Unit V	D Alembert principle.	Principle of linear impulse and momentum	
	Work, Energy and	for a	
	Power: Work of a force,	Particle and rigid body, Principle of angular	
	weight, spring force		
	and couple, Power,	momentum and Impulse, Conservation of	
	Efficiency,	angular	
	Energy, Kinetic energy of rigid body, Principle		
	of work and energy,		
	Conservative and		
	Nonconservative Force,		
	Conservation of energy.		
	Impulse and		

		ang Line imp of part Prin	ulse, Principle momentum for a ticle and rigid body, ciple of linear		
		mor	ulse and mentum for a		
			ticle and rigid body, ciple of angular		
			mentum and		
			ulse, Conservation ngular		
15	<u>BT204</u>	Digital Elec	atropics	Digital Electronics	No Change
15	<u>D1204</u>	UNIT I		Digital Electronics	No Change
		-	IC LOGIC GATES &	UNIT I	
		BOC	DLEAN ALGEBRA:	BASIC LOGIC GATES & BOOLEAN ALGEBRA:	
		Feat	tures of logic	Features of logic algebra, postulates of	
		alge	bra, postulates of	Boolean algebra. Theorems of Boolean	
		Воо	lean algebra.	algebra. Boolean function. Derived logic	
		The	orems of Boolean	gates: Exclusive-OR, NAND, NOR gates, their	
		alge	ebra. Boolean	block diagrams and truth tables. Logic	
		fund	ction. Derived logic	diagrams from Boolean expressions and	
		gate	es: Exclusive-OR,	vice-versa. Converting logic diagrams to	
		NAM	ND, NOR gates, their	universal logic. Positive, negative and mixed	
		bloc	ck diagrams and	logic. Logic gate conversion.	
		trut	h tables. Logic	UNIT II	
		diag	grams from Boolean	DIGITAL LOGIC GATE CHARACTERISTICS:	
		exp	ressions and vice-	TTL logic gate characteristics. Theory &	
		vers	a. Converting logic	operation of TTL NAND gate circuitry. Open	
		diag	grams to universal	collector TTL. Three state output logic. TTL	
		logi	c. Positive, negative	subfamilies. MOS & CMOS logic families.	
		and	mixed logic. Logic	Realization of logic gates in RTL, DTL, ECL, C-	
		gate	e conversion.	MOS & MOSFET. Interfacing logic families to	
		UNIT II		one another.	
		DIG	ITAL LOGIC GATE	UNIT III	
		CHA	RACTERISTICS: TTL	MINIMIZATION TECHNIQUES: Minterm,	
		logi	c gate	Maxterm, Karnaugh Map, K map upto 4	
			racteristics. Theory	variables. Simplification of logic functions	
		&	operation of TTL	with K-map, conversion of truth tables in	

 1			
	NAND gate circuitry.	POS and SOP form. Incomplete specified	
	Open collector TTL.	functions. Variable mapping. Quinn-Mc	
	Three state output	Klusky minimization techniques.	
	logic. TTL subfamilies.	UNIT IV	
	MOS & CMOS logic	COMBINATIONAL SYSTEMS: Combinational	
	families. Realization of	logic circuit design, half and full adder,	
	logic gates in RTL, DTL,	subtractor. Binary serial and parallel adders.	
	ECL, C-MOS & MOSFET.	BCD adder. Binary multiplier. Decoder:	
	Interfacing logic	Binary to Gray decoder, BCD to decimal, BCD	
	families to one	to 7-segment decoder. Multiplexer,	
	another.	demultiplexer, encoder. Octal to binary, BCD	
UNIT III		to excess-3 encoder. Diode switching matrix.	
	MINIMIZATION	Design of logic circuits by multiplexers,	
	TECHNIQUES: Minterm,	encoders, decoders and demultiplexers.	
	Maxterm, Karnaugh	UNIT V	
	Map, K map upto 4	SEQUENTIAL SYSTEMS: Latches, flip-flops,	
	variables. Simplification	R-S, D, J-K, Master Slave flip flops.	
	of logic functions with	Conversions of flip-flops. Counters :	
	K-map, conversion of	Asynchronous (ripple), synchronous and	
	truth tables in POS and	synchronous decade counter, Modulus	
	SOP form. Incomplete	counter, skipping state counter, counter	
	specified functions.	design. Ring counter. Counter applications,	
	Variable mapping.	Registers: buffer register, shift register.	
	Quinn-Mc Klusky		
	minimization		
	techniques.		
UNIT IV			
	COMBINATIONAL		
	SYSTEMS:		
	Combinational logic		
	circuit design, half and		
	full adder, subtractor.		
	Binary serial and		
	parallel adders. BCD		
	adder. Binary		
	multiplier. Decoder:		
	Binary to Gray decoder,		
	BCD to decimal, BCD to		
	7-segment decoder.		
	r-segment decoder.		

		divergence and curl of fields, Green, Gauss	Matrix algebra, rank of a matrix, adjoint and inverse of a matrix, Solution of algebraic	
		derivatives, gradient,		
		surfaces, directional	fields, Green, Gauss and Stokes theorems.	
		and vector fields, level	derivatives, gradient, divergence and curl of	
		transformations, scalar	vector fields, level surfaces, directional	
		basis and linear	basis and linear transformations, scalar and	
		dependence of vectors,	Vector spaces, linear dependence of vectors,	
		Vector spaces, linear	UNIT I	
		UNIT I		
16	<u>BT205</u>	Applied Mathematics II	Applied Mathematics II	No Change
		register, shift register.		
		Counter applications, Registers: buffer		
		design. Ring counter.		
		counter, counter		
		counter, skipping state		
		counter, Modulus		
		synchronous decade		
		synchronous and		
		Asynchronous (ripple),		
		flops. Counters :		
		Conversions of flip-		
		Master Slave flip flops.		
		flops, R-S, D, J-K,		
		SYSTEMS: Latches, flip-		
		SEQUENTIAL		
		UNIT V		
		demultiplexers.		
		encoders, decoders and		
		by multiplexers,		
		Design of logic circuits		
		switching matrix.		
		encoder. Diode		
		binary, BCD to excess-3		
		encoder. Octal to		
		demultiplexer,		

	and Stokes theorems.	equations using matrix algebra, consistency	
UNIT I			
		conditions, eigenvalues and eigenvectors , Hermitian matrices.	
	Matrix algebra, rank of		
	a matrix, adjoint and		
	inverse of a matrix,	Numerical solution of matrix equations	
	Solution of algebraic	using Gauss, Gauss-Seidel, LU	
	equations using matrix	decomposition and other iterative methods.	
	algebra , consistency		
	conditions, eigenvalues	Convergence of improper integrals, tests of	
	and eigenvectors ,	convergence, elementary properties of beta	
	Hermitian matrices.	and gamma functions, differentiation under	
UNIT I	II	integral sign, Leibnitz rule, integrals	
	Numerical solution of	dependent on a parameter, trapezoidal and	
	matrix equations using	Simpson's integration rules, applications in	
	Gauss, Gauss-Seidel, LU	engineering.	
	decomposition and	UNIT V	
	other iterative	Numerical methods; round off and	
	methods.	truncation errors, approximations, order of	
UNIT I	v	convergence, Newton's forward and	
	Convergence of	backward interpolation formula, central	
	improper integrals,	difference interpolation, solutions of	
	tests of convergence,	polynomial equations using bisection,	
	elementary properties	Newton-Raphson and Regula-falsi methods.	
	of beta and gamma		
	functions,		
	differentiation under		
	integral sign, Leibnitz		
	rule, integrals		
	dependent on a		
	parameter, trapezoidal		
	and Simpson's		
	integration rules,		
	applications in		
	engineering.		
UNIT			
	Numerical methods;		
	truncation errors,		
	approximations, order		

of convergence,	
Newton's forward and	
backward interpolation	
formula, central	
difference	
interpolation, solutions	
of polynomial	
equations using	
bisection, Newton-	
Raphson and Regula-	
falsi methods.	
17 BT206 Environmental Sciences Environmental Sciences	ences No Change
UNIT I UNIT I	
Ecosystem and Ecosystem and Biodiversity	y: Components
Biodiversity: and types of ecosystem,	Structure and
Components and types functions of Ecosystem, Val	lues, Type and
of ecosystem, Structure levels of Biodiversity, Causes	s of extension,
and functions of and Conservation methods of	⁵ biodiversity.
Ecosystem, Values, <u>UNIT II</u>	
Type and levels of <u>Air Pollution: Definition, dif</u>	ferent types of
Biodiversity, Causes of Sources, effects on biotic	<u>c and abiotic</u>
extension, and <u>components and Control m</u>	nethods of air
Conservation methods pollution.	
of biodiversity. UNIT III	
UNIT II Water pollution: Definition,	different types
<u>Air</u> Pollution: of Sources, effects on biot	tic and abiotic
Definition, different components and treatment t	technologies of
types of Sources, water pollution.	
effects on biotic and UNIT IV	
abiotic components Noise Pollution: Introduct	<u>tion of noise</u>
and Control methods of pollution, different Source	es, effects on
air pollution. abiotic and biotic environme	ent and Control
UNIT III <u>measures.</u>	
Water pollution <u>:</u> UNIT V	
Definition, different Non Conventional ene	ergy sources:
types of Sources, Introduction, Renewable Sou	rces of Energy:
effects on biotic and Solar energy, wind energy,	, Energy from

abiotic components ocean, energy from biomass, geothermal and treatment energy and Nuclear Energy. technologies of water pollution. pollution. UNIT IV Noise Pollution: Introduction of noise pollution, different Sources, effects on abiotic and biotic environment and control measures. Control measures. UNIT V Non Conventional energy sources: energy sources:	
technologies of water pollution. UNIT IV Noise Pollution: Introduction of noise pollution, different Sources, effects on abiotic and biotic environment and Control measures. UNIT V Non Conventional energy sources:	
pollution. UNIT IV Noise Noise Pollution: Introduction of noise pollution, different Sources, environment and Control measures. UNIT V Non Conventional energy sources:	
UNIT IV Noise Pollution: Introduction of noise pollution, different Sources, effects on abiotic and biotic environment and Control measures. UNIT V Non Conventional energy sources:	
Noise Pollution: Introduction of noise pollution, different Sources, effects on abiotic and biotic environment and Control measures. UNIT V Non Conventional energy sources:	
Introduction of noise pollution, different Sources, effects on abiotic and biotic environment and Control measures. UNIT V Non Conventional energy sources:	
pollution, different Sources, effects on abiotic and biotic environment and Control measures. UNIT V Non Conventional energy sources:	
Sources, effects on abiotic and biotic environment and Control measures. UNIT V Non Conventional energy sources:	
abiotic and biotic environment and Control measures. UNIT V Non Conventional energy sources:	
environment and Control measures. UNIT V <u>Non Conventional</u> energy sources:	
Control measures. UNIT V <u>Non Conventional</u> <u>energy sources</u> :	
UNIT V <u>Non Conventional</u> <u>energy sources</u> :	
UNIT V <u>Non Conventional</u> <u>energy sources</u> :	
energy sources:	
energy sources:	
Introduction,	
Renewable Sources of	
Energy: Solar energy,	
wind energy, Energy	
from ocean, energy	
from biomass,	
geothermal energy and	
Nuclear Energy.	
18 BT207 Electrical and Electronics Lab-II Electrical and Electronics Lab-II No Chan	ge
List of Experiment: List of Experiment:	0
1. To verify the truth tables of1. To verify the truth tables of basic	
basic logic gates: AND, OR, logic gates: AND, OR, NOR, NAND,	
NOR, NAND, NOR. Also to NOR. Also to verify the truth table of	
verify the truth table of Ex-OR, Ex-OR, Ex-NOR.	
Ex-NOR.2. To verify the truth table of OR,	
2. To verify the truth table of OR, AND, NOR, Ex-OR, Ex-NOR realized	
AND, NOR, Ex-OR, Ex-NOR realized using NAND & NOR gates.	
using NAND & NOR gates. 3. To realize an SOP and POS	
3. To realize an SOP and POS expression.	
expression. 4. To realize adder and Subtractor	
4. To realize adder and Subtractor using universal gates.	
using universal gates. 5. To verify the truth table of	
5. To verify the truth table of Encoder and decoder.	
Encoder and decoder.6. To verify the truth table of	

		 6. To verify the truth table of multiplexer and demultiplexer. 7. To study and perform Various types of Flip-Flops. 	multiplexer and demultiplexer. 7. To study and perform Various types of Flip-Flops. 8. To study and perform various	
		 8. To study and perform various types of counters. 9. To study and perform various types of shift registers. 10. To study and perform various types of Multivibrators. 11. To study and perform Schmitt Trigger. 	types of counters. 9. To study and perform various types of shift registers. 10. To study and perform various types of Multivibrators.	
19	<u>BT208</u>	Engineering Physics Lab-II	Engineering Physics Lab-II	No Change
		List of Experiments:	List of Experiments:	
		 Conversion of a Galvanometer in to an ammeter and calibrate it. Conversion of a Galvanometer in to voltmeter and calibrate it. To determine the value of "g" by using compound pendulum. To determine Plank's constant using LED. To measure the Numerical Aperture (NA) of an optical fiber. To determine the profile of He- Ne Laser beam. To determine the wavelength of different lights using diffraction grating and spectrometer. To determine the wavelength of sodium light by Newton's ring method. To determine the specific rotation of glucose using Polarimeter. 	 Conversion of a Galvanometer in to an ammeter and calibrate it. Conversion of a Galvanometer in to voltmeter and calibrate it. To determine the value of "g" by using compound pendulum. To determine Plank's constant using LED. To measure the Numerical Aperture (NA) of an optical fiber. To determine the profile of He-Ne Laser beam. To determine the wavelength of different lights using diffraction grating and spectrometer. To determine the specific rotation of glucose using Polarimeter. To determine minimum deviation angle for different light using 	
		 Polarimeter. 10. To determine minimum deviation angle for different light using prism and spectrometer. 11. To study of detergent on surface tension of water by observing capillary rise 12. To determine the speed of sound in air at room temperature using a resonance 	 prism and spectrometer. 11. To study of detergent on surface tension of water by observing capillary rise 12. To determine the speed of sound in air at room temperature using a resonance tube by two resonance position. 	

		tube by two resonance position.		
20	<u>BT209</u>	COMPUTER PROGRAMMING LAB	COMPUTER PROGRAMMING LAB	No Change
		LIST OF EXPERIMENTS	LIST OF EXPERIMENTS	
		1 Write a program to calculate the area & perimeter of rectangle.	1 Write a program to calculate the area & perimeter of rectangle.	
		2 Write a program to calculate the area and circumference of a circle for a given radius.	2 Write a program to calculate the area and circumference of a circle for a given radius.	
		3 Write a program to calculate simple interest for a given principal/amount.	3 Write a program to calculate simple interest for a given principal/amount.	
		4 Write a program to convert temperature given in °C to	4 Write a program to convert temperature given in °C to temperature in °F.	
		temperature in ∘F.Write a program to find profit and loss (in percentage) of a given cost	5 Write a program to find profit and loss (in percentage) of a given cost price and selling price.	
		price and selling price.6 Write a program to find out the maximum among the three given	6 Write a program to find out the maximum among the three given numbers.	
		numbers. 7 Write a program to calculate the factorial of a given number.	7 Write a program to calculate the factorial of a given number.	
		 8 Write a program to print the list of first 100 odd number. 	8 Write a program to print the list of first 100 odd number.	
		9 Write a program to calculate the sum of the digits of a number and	9 Write a program to calculate the sum of the digits of a number and display it in reverse order.	
		display it in reverse order. 10 Write a program to generate a Fibonacci series.	10 Write a program to generate a Fibonacci series.11 Write a program to generate the	
		11 Write a program to generate the following series:	following series:	
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
		12 Write a program to generate the following series:	12 Write a program to generate the following series:	
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
		0 1 0 1 0 13 Write a program using a function to check whether the given number is	13 Write a program using a function to check whether the given number is prime or not.	
		prime or not. 14 Write a program to check whether the given string is a palindrome or	 14 Write a program to check whether the given string is a palindrome or not. 15 Write a program to find the length of a 	
		not. 15 Write a program to find the length	15 Write a program to find the length of a string, reverse the string and copy one string to another by using library	

21	<u>BT210</u>	 operation depending on whether the operation requires one or two matrices Addition of two matrices Subtraction of two matrices Finding upper and lower triangular matrices Transpose of a matrix Product of two matrices. 20 Write a program to copy one file to other, use command line arguments. 21 Write a program to perform the following operators an Strings without using String functions To find the Length of String. To concatenate two string. To find Reverse of a string. To find Reverse of a string. To Copy one sting to another string. 22 Write a Program to store records of an student in student file. The data must be stored using Binary File.Read the record stored in "Student.txt" file in Binary code.Edit the record stored in Binary File.Append a record in the Student file. 23 Write a programmed to count the no of Lowercase, Uppercase numbers and special Characters presents in the contents of File. Engineering Drawing Sheet 1 Orthographic Projections (3 Problems) 	 requires one or two matrices Addition of two matrices Subtraction of two matrices Finding upper and lower triangular matrices Transpose of a matrix Product of two matrices. 20 Write a program to copy one file to other, use command line arguments. 21 Write a program to perform the following operators an Strings without using String functions To find the Length of String. To concatenate two string. To find Reverse of a string. To Copy one sting to another string. 22 Write a Program to store records of an student in student file. The data must be stored using Binary File.Read the record stored in "Student.txt" file in Binary code.Edit the record stored in Binary File.Append a record in the Student file. 23 Write a programmed to count the no of Lowercase, Uppercase numbers and special Characters presents in the contents of File. 	No Change
		Problems) Sheet 2 Riveted joints: Lap joints, butt joints, chain riveting, zig-zag riveting Sheet 3 Screw fasteners, different	Problems) Sheet 2 Riveted joints: Lap joints, butt joints, chain riveting, zig-zag riveting Sheet 3 Screw fasteners, different	
		threads, Nuts & bolts locking devices, set screws, Sheet 4 Scale, plain scales, diagonal scales, scale of chords	threads, Nuts & bolts locking devices, set screws, Sheet 4 Scale, plain scales, diagonal scales, scale of chords	

				· · · · · · · · · · · · · · · · · · ·
		Sheet 5 Conic Sections: Construction of ellipse, parabola and hyperbola	Sheet 5 Conic Sections: Construction of ellipse, parabola and hyperbola	
		Sheet 6 Engineering Curves: Cycloid, Epicycloids, Hypo-cycloid, Involutes, Archemedian and logarithmic spirals	Sheet 6 Engineering Curves: Cycloid, Epicycloids, Hypo-cycloid, Involutes, Archemedian and logarithmic spirals	
		Sheet 7 Projection of points and lines, True inclinations and true length of straight lines, Traces of straight lines	Sheet 7 Projection of points and lines, True inclinations and true length of straight lines, Traces of straight lines	
		Sheet 8 Projection of planes and solids: Projection of planes, Projection of polyhedra, Pyramids.	Sheet 8 Projection of planes and solids: Projection of planes, Projection of polyhedra, Pyramids.	
22	<u>BT211</u>	Communication Skills Lab	Communication Skills Lab	No Change
		1. Introducing yourself.	1. Introducing yourself.	
		2. Role Plays.	2. Role Plays.	
		3. Word Formation.	3. Word Formation.	
		4. Listening and Speaking Skills.	4. Listening and Speaking Skills.	
		5. Words often mis-spelt and Mis-	5. Words often mis-spelt and Mis-	
		Pronounced.	Pronounced.	
		6. One word for many.	6. One word for many.	
		7. Synonyms and Antonyms.	7. Synonyms and Antonyms.	
		8. Seminar Presentation.	8. Seminar Presentation.	
		9. Group Discussion.	9. Group Discussion.	
		10. Job Interview.	10. Job Interview.	
23	BTEE3 01	Applied Mathematics-III	Electronic Devices & Circuits UNIT-1	New course
		 UNIT1 Differential Equations - linear differential equations of higher order with constant coefficients. Second Order ODE with Variable Coefficients, Homogeneous form, Exact Equations, Change of Dependent variable, Change of Independent Variable, Normal form, Variation of Parameters. UNIT 2 Series Solutions - Solution in series of second order LDE with variable coefficients (CF only). PARTIAL DIFFERENTIAL EQUATION- Partial differential equation of first order, Lagrange's form, standard forms, Charpit's 	Semiconductor Physics: Mobility and conductivity, charge densities in a semiconductor, Fermi Dirac distribution, Fermi-Dirac statistics and Boltzmann approximation to the Fermi-Dirac statistics, carrier concentrations and Fermi levels in semiconductor. Generation and recombination of charges, diffusion and continuity equation, transport equations, Mass action Law, Hall effect. UNIT-2 Junction Diodes: Formation of homogenous and hetrojuntion diodes and their energy band diagrams, calculation of contact potential and depletion width, V-I characteristics, Small signal models of diode, Diode as a circuit element, diode parameters and load line concept, C-V characteristics and dopant profile.	
		method UNIT 3 Laplace Transform - Laplace	Applications of diodes in rectifier, clipping, clamping circuits and voltage	

		1		· · · · · · · · · · · · · · · · · · ·
		 transform with its simple properties, Laplace transform of unit step function and periodic function, Convolution Theorem, inverse Laplace transform, applications to the solution of ordinary and partial differential equations having constant coefficient with special reference to heat equation and wave equation. UNIT 4 Statistics- Standard deviation, moments, skewness, kurtosis, Curve fitting methods-method of least squares, fitting of a straight line, parabola. Correlation and regression, line of regression. Fourier Series - Expansion of simple functions in Fourier series. Half range series, Change of intervals, Harmonic analysis. UNIT 5 Fourier Transform - Complex form of Fourier Transform and its inverse, Fourier sine and cosine transform and their inversion. Applications of Fourier transform and mathematical actions having constant co-efficient with special reference to heat equation and wave equation. 	 multipliers.Transient behavior of PN diode.Breakdown diodes, Schottky diodes, and Zener diode as voltage regulator.Construction, characteristics and operating principle of UJT. UNIT-3 Transistors: Characteristics, Current Components, Current Gains: alpha and beta. Variation of transistor parameter with temperature and current level, Operating point, Hybrid model, DC model of transistor, h- parameter equivalent circuits.CE, CB and CC configuration DC and AC analysis of single stage CE, CC (Emitter follower) and CB amplifiers AC & DC load line, Ebers-Moll model.Biasing & stabilization techniques.Thermal runaway, Thermal stability. UNIT-4 JFET & MOSFET: Construction and operationofJFET & MOSFET, noise performances of FET, parasitic of MOSFET, small signal models of JFET & MOSFET Biasing of JFET's & MOSFET's. Low frequency single stage CS and CD (source follower) JFET amplifiers.FET as voltage variable resistor and active load. UNIT-5 Small Signal Amplifiers at Low Frequency: Analysis of BJT and FET multistage amplifier, DC and RC coupled amplifiers. Frequency response of single and multistage amplifier, DC and differential amplifiers, Frequency. Analysis of DC and differential amplifiers, Miller's Theorem, use of Miller and bootstrap configuration.Cascade and cascade configuration of multistage amplifiers, Miller's Theorem, use of Miller and bootstrap configuration.Cascade and cascade configuration of multistage amplifiers, Miller's Theorem, use of Miller and bootstrap configuration.Cascade and cascade configuration of multistage amplifiers, Miller's Theorem, use of Miller and bootstrap configuration.Cascade and casc	
24	BTEE3 02	Circuit Analysis-I Unit I	Circuit Analysis-I UNIT-I	Syllabus Change
		Coupled Circuit :- Conductively coupled circuit, mutual impedance, magnetic coupling, mutual inductance, coefficient of magnetic coupling, transferred impedance, transformer equivalent inductively and conductively coupled circuits.	Introduction: Introduction to circuit elements and their characteristics. Current and voltage reference. Response of single element, double element and triple element circuits. Resonance, selectivity & Q- factor in ac circuits. Network Analysis: Network voltages. Mesh & node systems of network equations and their comparison. Graph of network,	

		TT •/ TT		the insidence metric Conference 1	
		Unit II	Network theorem :- Thevenin's theorem, Norton's theorem, superposition, reciprocity, compensation, millman's, tellegen's, maximum power transfer and miller's theorem.	tree, incidence matrix, fundamental circuit functions, cut sets, f-circuits analysis and f-cut set analysis, node and node pair analysis. Duality. Method of obtaining dual network. UNIT-II Network Theorems:Thevenis's, Norton's,	
		Unit III	Graph Theory :- Introduction, concept of graph of the networks, trees and their properties,	Superposition, Reciprocity, Compensation, Millman's theorem Tellegen's, Maximum power transfer and Miller's theorems in DC & AC Circuits.	
		Unit IV	 incidence matrix, fundamental tie set matrix, fundamental cut set matrix, equilibrium equation on loop and node bases and their solutions. Poly phase Circuit:- Star and delta combination, four wire star 	UNIT-III Polyphase Circuits: General Circuit Relations: Three Phase Star, Three Phase Delta, Star and Delta Combination, Four Wire Star Connection.Balanced and unbalanced Three Phase Voltages, currents and Impedances. Power and Reactive Volt-Amperes in a 3-Phase System	
			connection, balanced three phase voltages and unbalanced impedances, power and reactive volt-amperes in 3phase system,	Power Relations in AC Circuits: Instantaneous Power in AC Circuits, Power Factor, Apparent Power, Reactive Power, Power Triangle, Complex Power.	
			power relation in 3phase circuits. Power factor, resonance, resonance between parallel R-C and R-L circuit, selectivity and bandwidth, physical interpretation of selectivity.	UNIT-IV Non-Sinusoidal Waves: Complex Periodic Waves and Their Analysis By Fourier Series. Different Kinds of Symmetry, Determination of Co-Efficient. Average and Effective Values of a Non-Sinusoidal Wave,	
		Unit V		Power in a Circuit of Non-Sinusoidal Waves of Current and Voltage	
			Time Domain and Frequency Domain Analysis:- response of networks to step, ramp, impulse, pulse and sinusoidal inputs, time domain and frequency domain analysis of circuits, sifting	Form Factor, Equivalent Sinusoidal Wave and Equivalent Power Factor. Response of Linear Network to Non-Sinusoidal Periodic Waves.	
			theorem, initial and final value theorem, special signal waveforms with lapalace transform & application to circuit operation.	Time Domain and Frequency Domain Analysis: Response of networks to step, ramp, impulse, pulse and sinusoidal inputs. Time domain and frequency domain analysis of circuits. Shifting theorem, initial and final value theorems. Special signal waveforms with Laplace transform & applications to circuit operations.	
25	BTEE3 03	Electrica Unit I	al Machine-I	Liner Integrated Circuits UNIT-I	New course
	05	Unit I	Energy conversion : Principal of Electromechanical energy conversion, Energy stored in a magnetic field system , Singly	OPERATIONAL AMPLIFIERS: Basic differential amplifier analysis, Basic structure and principle of operation,	
		Unit II	DC generators: Construction	Single ended and double ended configurations ,, calculation of differential gain,	
				common mode gain Op-amp configurations	

		Phenomenon , Inrush Corrent Phenomena . Unit V Cross Field Machines: Principal of Operation of Rosenberg generators, Amplidyne and Metadyne .	Inverting and Non-Inverting configuration, Comparators, Adder. UNIT-II OPERATIONAL AMPLIFIER APPLICATIONS: Integrator, Differentiator, Voltage to frequency & Frequency to voltage converters. Oscillators: Phase shift, Wien bridge, Quadrature, precision rectifier, half and full wave rectifiers, square wave, triangular wave, sawtooth oscillators. Voltage controlled oscillators. UNIT-III ACTIVE FILTERS: Low pass, high pass, band pass and band reject filters, All pass filter, Switched capacitor filter, Butterworth filter design, Chebyshev Filter design. UNIT-IV LINEAR ICS: Four quadrant multiplier & its applications, Basic blocks of linear IC voltage regulators, Three terminal voltage regulators, Positive and negative voltage regulators. The 555 timer as astable and monostable multivibrators. Zero crossing detector, Schmitt trigger and its applications. UNIT-V Non- linear Applications of OP-AMP: log and antilog amplifiers, and multipliers. Solution of differential equation and analog computer PHASE-LOCKED LOOPS: Operating Principles of PLL, Linear Model of PLL, Lock range, Capture range, Applications of OPL as FM detector, FSK demodulator, AM detector, frequency translator, phase shifter, tracking filter, signal synchronizer and frequency synthesizer, Building blocks of PLL, LM 565 PLL.	
26	BTEE3 04	Electronic Measurements & Instrumentation UNIT 1 MEASUREMENTS AND ERRORS - Measurements - significance of measurements - methods of measurement - instruments and measurement systems - classification of instruments - elements of	UNIT-II	Code Change

		measurement system. Accuracy	(Process oriented and Object oriented).	
		and precision - significant figures	Concept of object, class, objects as variables	
		- types of errors - probability of	of class data type, difference in	
			structures and class in terms of access to	
		errors - limiting errors.		
		Repeatability, Systematic &	members, private and public Basics of C++:	
		random errors, modeling of	Structure of C++ programs, introduction to	
		errors, standard deviation,	defining member functions within and	
		Gaussian error analysis,	outside a class, keyword using, declaring	
		Combination of errors.	class, creating objects, constructors &	
	UNIT 2	combination of circles.	destructor functions, Initializing member	
		ELECTRONIC INSTRUMENTS	values with and without use of	
		FOR MEASUREMENTS - DC	constructors, simple programs to access &	
		Voltmeter, DC Ammeter, Ohm	manipulate data members, cin and cout	
		meter, Multimeter, AC	functions.	
		meters, Electrodynamometer ,		
		Watt hour meter ,digital voltmeter	Dangers of returning reference to a private	
		, component measuring system Q	data member, constant objects and	
		meter, vector impedance meter,	members function, composition of classes,	
		frequency meters.RF Power &	friend functions and classes, using this	
		Voltage Measurements.	pointer, creating and destroying objects	
		D'Arsonaval, Vibration and	dynamically using new and delete operators.	
		Ballistic	Static class members, container classes and	
		galvanometers.Introduction to	iterators, proxy classes. Members of a	
		shielding & grounding	class, data & function members.	
		sinciaing & grounding	Characteristics of OOP- Data hiding,	
	TINIT		•	
	UNIT 3		Encapsulation,	
		BRIDGE MEASUREMENT -	data security.	
		Introduction, Wheatstone Bridge,		
		Kelvin Bridge, AC Bridges,	UNIT-III	
		Maxwell's inductance and	Operator Overloading: Fundamentals,	
		capacitance bridges, Hay Bridge,	Restrictions, operator functions as class	
		Schering Bridge, unbalanced	members v/s as friend functions.	
		• •	members v/s as mena functions.	
		e ,		
		Wagner ground connection.	Overloading stream function, binary	
		Sources and Detectors. Anderson	operators and unary operators. Converting	
		bridge, Heaviside bridge,	between types.	
		DeSauty bridge Sources of errors		
		in bridge measurements and their	UNIT-IV	
		minimization.	Inheritance: Base classes and derived	
	UNIT 4		classes, protected members, relationship	
	0.011 4	TRANSDUCERS - Classification	between base class and derived classes,	
			constructors and destructors in derived	
		of transducers, Selection Criteria,		
		Characteristics, Construction,	classes, public, private and protected	
		Working Principles, selecting	inheritance	
		transducers , strain gauges ,		
		displacement transducers ,	Relationship among objects in an inheritance	
		capacitive and inductive	hierarchy, abstract classes, virtual	
		transducers, LVDT, oscillation	functions and dynamic binding, virtual	
		transducer - piezoelectric,	destructors.	
		potentiometer, velocity		
		transducers temperature	UNIT-V	
		transducers, optical transducers,	Multiple inheritance, virtual base classes,	
		RTD, Thermocouples,	pointers to classes and class members,	
		Thermistors, RVDT, Bourdon	multiple class members. Templates,	
		Tubes, Bellows. Diaphragms,	exception handling.	
		Load Cell, Ultrasonic Flow		
		Meters.		
	UNIT 5			
		SIGNAL GENERATION AND		
		DISPLAY INSTRUMENTS -		
		Sine wave generators, Frequency		
		synthesized signal generators,		

			Sweep frequency		
			generators, Frequency - selective		
			wave analyser,harmonic		
			distortion analyzer, spectrum		
			analyzer, logic analyzer, dual		
			trace oscilloscope, digital storage		
			oscillator , XY plotter. CRT		
			Construction, Basic CRO circuits,		
			CRO Probes, Oscilloscope		
			Techniques of Measurement of frequency, Phase Angle and Time		
			Delay, Multi beam, multi trace,		
			sampling Oscilloscopes.		
			company composeptor		
27	BTEE3	Genera	tion of Electric Power	Electrical Machines-I	Title change
	05	Unit-1		UNIT-I	code change
			Conventional Energy	(I)Magnetic circuits:Magnetic circuits,	
			Generation Methods: (i)	magneto motive force magnetic field	
			Thermal Power plants: Basic	strength, permeability, reluctance, analogy	
			schemes and working principle.	between electric and magnetic-circuits, B-H	
			(ii) Gas Power Plants: open	curve, hysteresis, series and parallel	
			cycle and closed cycle gas turbine plants, combined gas & steam	magnetic circuits, practical magnetic circuits, permanent magnet and their applications.	
			plants, comonied gas & steam plants – basic schemes. (iii)	permanent magnet and then appreations.	
			Hydro Power Plants:	(ii)Electromechanical energy conversion:	
			Classification of hydroelectric	Basic principles, conservation of energy,	
			plants. Basic schemes of	physical phenomenon involved in	
			hydroelectric and pumped storage	conversion, energy balance, energy stored in	
			plants. (iv) NuclearPower	magnetic field.	
			Plants: Nuclear fission and	-	
			Nuclear fusion. Fissile and fertile	UNIT-II	
			materials. Basic plantschemes	DC Generators: Introduction, construction,	
			with boiling water reactor, heavy	types, emf equation, lap and wave	
			water reactor and fast breeder	windings, armature reaction, commutation,	
			reactor. Efficienciesof various	methods of improving commutation,	
		Unit-2	power plants.	equalizer rings	
		Unit-2	New Energy Sources: Impact of	Demagnetizing and cross magnetizing	
			thermal, gas, hydro and nuclear	8 8 8	
			power stations onenvironment.	shunt.	
			Green House Effect (Global	series and compound generators, voltage	
			Warming). Renewable and non-	build up, losses and efficiency, condition for	
			renewable energysources.	maximum efficiency.	
			Conservation of natural resources		
			and sustainable energy systems.	UNIT-III	
			Indian energy scene. Introduction	DC Motors: Introduction, principals, back-	
			to electric energy generation by	emf, torque of motor, types, characteristics	
		Un:4 2	wind, solar and tidal.	of shunt, series and compound motors, speed	
		Unit-3	(i) Loads and Load curves:	control (field and armature control methods), basic idea of solid state devices in	
			Types of load, chronological load	controlling of DC motors	
			curve, load duration curve, energy	concoming of DC motors	
			load curve and mass curve.	Starting of DC motors, three point and four	
			Maximum demand, demand	point starters, losses and efficiency, testing	
			factor, load factor, diversity	(brake test and swimburnes test), electric	
			factor, capacity factor and	braking of DC motors, Applications.	
			utilization. (ii) Power factor		
			improvement: Causes and effects	UNIT-IV	
			of low power factor and	Transformer: Construction, Principal,	
			advantages of power factor	Types, emf equation, no load and short	
			improvement. Power factor	circuit	
			improvement using shunt	test, equivalent circuits, back-to-back	

			capacitors and synchronous condensers.	(Sumpner's test), phasor diagram, Voltage regulation	
		Unit-4	condensers.	regulation	
			Power Plant Economics: (i) Capital cost of plants, annual	Efficiency, Condition for maximum efficiency, all day efficiency, parallel	
			fixed and operating costs of	operation ,	
			plants, generation cost and	auto-transformer, basic idea of welding	
			depreciation. Effect of load factor on unit energy cost. Role of load	transformer, current and potential transformer, separation of losses.	
			diversity in power system		
			economics. (ii) Calculation of	UNIT V Debahase Transformer	
			most economic power factor when (a) kW demand is constant	Polyphase Transformer: Construction, Various connections and	
			and (b) kVA demand is constant.	groups, choice of	
			(iii) Energy cost reduction: off peak energy utilization, co-	connections, open delta connection, Scott connection, three phase to two phase	
			generation, and energy	conversion and vice-versa, Applications,	
		TT T T	conservation.	Parallel operation and its conditions	
		Unit-5	(i) Tariffs: Objectives of tariffs.	Three to six phase conversion.Excitation	
			General tariff form. Flat demand	phenomenon in transformers, magnetizing	
			rate, straight meter rate, block meter rate. Two part tariff, power	harmonic currents and their effects, switching currents in transformers, inrush of	
			factor dependent tariffs, three-part	magnetizing current. Three winding	
			tariff. Spot (time differentiated)	transformer.	
			pricing. (ii) Selection of Power Plants: Comparative study of	S. No. Name of authors'/books/publisher	
			thermal, hydro, nuclear and gas	Year of pub.	
			power plants. Base load and peak load plants. Size and types of	1 A. E. Fitzgerald, C. Kingsley Jr and Umans, Electric Machinery, 6th Edition	
			generation units, types of reserve	McGraw	
			and size of plant. Selection and	Hill, International Student Edition.2002	
			location of power plants.	2 Kothari & Nagrath, Electric Machines, 3/e, TMH 2004	
28	BTEE3 06	Object Unit I:	Oriented Programming	Advanced Engineering Mathematics-I UNIT-I	Title change code change
				Laplace Transform: Laplace transform with its simple properties, applications to	
			Paradigms; Structured versus Object-Oriented Development;	the solution of ordinary and partial	
			Elements of Object Oriented	differential equations having constant	
			Programming – encapsulation, data hiding, data abstraction,	coefficients with special reference to wave and diffusion	
			inheritance, polymorphism,	equations, digital transforms.	
			message communication; Popular OOP Languages, Merits and	UNIT-II	
			Demerits of Object Oriented	Fourier Transform: Discrete Fourier	
			Methodology.	transform, Fast Fourier transform, Complex	
		Unit II	: Overview of C++; Class	form of Fourier transform and its inverse applications	
			specification, class objects; Inline		
			functions; Nesting of member functions, function overloading;	Fourier transform for the solution of partial differential equations having constant	
			Arrays within a class, arrays of	coefficients with special reference to heat	
			objects, returning objects; Static	equation and wave equation.	
			data members, static member functions; Friend functions and	UNIT-III	
			friend classes; Constructors and	Fourier Series: Expansion of simple	
			Destructors – order of construction and destruction,	functions in Fourier series, half range series, change of interval, harmonic analysis.	
			parameterized constructors,		

		constructoroverloading, constructorswithdefault arguments, copy constructor, dynamic initialization of objectsUnit III:Operator Overloading – rules for overloading, overloading unary & binary operators, overloading binary operators using friends; Type Conversions – basic to class type, class to basic type, class to class type; Inheritance – forms of inheritance, inheritance and member accessibility, constructors and destructors in derived classes, constructor invocation and data members initialization, virtual base classes, nested and inner classes.Unit IV:Concept of dynamic binding; Pointers to objects; this pointer; Pointers to derived classes; Virtual functions, pure virtual functions; Object Slicing; Abstract classes, Smart pointers; Managing Console I/O Operations – C++ stream classes, unformatted I/O operations, formatted console I/O oper	 Calculus of Variation: Functional, strong and weak variations, simple variation problems, Euler's equation UNIT-IV Complex Variables: Analytic functions, Cauchy–Riemann equations, Elementary conformal mapping with simple applications Line integral in complex domain, Cauchy's theorem, Cauchy's integral formula. UNIT-V Complex Variables: Taylor's series, Laurent's series, poles, Residues. Evaluations of simple definite real integrals using the theorem of residues.Simple contour integration. S. No. Name of authors'/books/publisher Year of pub. 1 M. Ray, J. C. Chaturvedi & H.C. Sharma, Differential Equations, Students friends & company 2011 2 Chandrika Prasad, Mathematics for Engineers, Prasad Mudralaya 2012. Reference Books S. No. Name of authors'/books/publisher Year of pub. 1 Bird, Higher Engineering Mathematics, 	
		manipulations, sequential and random access to a file, saving and retrieving of objects. Unit V: Generic programming with templates - function templates, class templates; Exception handling model and constructs; Standard Template Library(STL) overview, container classes; Namespace; Runtime typecasting.	ELSEVIER. 2004 2 Jeffrey, Advanced Engineering Mathematics, ELSEVIER. 2001 3 Chandrika Prasad, Advanced Mathematics for Engineers, Prasad Mudralaya 2006 4 Ervin Kreyzig, Advanced Engineering Maths, Wiley. 2005	
29	BTEE3 07	 Electrical Machine Lab – I Speed control of D.C. shunt motor by (a) field current control method& plot the curve for speed vs field current(b) armature voltage control method. Speed control of D.C. motor by ward leonard method and to plot curve for speed vs applied armeture voltage 	Electronic Devices Lab 1. Study the following devices: (a) Analog & digital multimeters (b) Function/ Signal generators (c) Regulatedd. c. power supplies (constant voltage and constant current operations) (d) Study of analog CRO,measurement of time period, amplitude, frequency &	New course
		 armature voltage. 3. To determine the efficiency of D.C. shunt motor by loss swenmarion method. 4. To determine the efficiency of two identical D.C. machine by 	 period, amplitude, frequency & phase angle using Lissajous figures. Plot V-I characteristic of P-N junction diode & calculate cut-in voltage, reverse saturation current and static & dynamic resistances. 	

		 hopkinos's regenerative test. 5. To perform O.C. & S.C. a one phase transformer & determine the parameter of its equivalent ckt its voltage regulation & efficiency. 6. To perform back to back test on two identical I phase transformer & find their efficiency process of equivalent circuit. 7. To perform parallel operation of two 1 phase transformer & determine their load sharing. 8. To determine the efficiency & voltage regulation of single phase transformer by direct loading. 9. To perform OC & SC test on a 3 phase transformer find its efficiency & parameter of its equivalent circuit. To study and perform of 3 phase transformer for its varios connection i.e. star/star, star/delta, delta delta , delta/delta & find magnitude of 3rd harmonic current. 	 Plot V-I characteristic of zener diode and study of zener diode as voltage regulator. Observe the effect of load changes and determine load limits of the voltage regulator. Plot frequency response curve for single stage amplifier and to determine gain bandwidth product. Plot drain current - drain voltage and drain current - drain voltage and drain current - gate bias characteristics of field effect transistor and measure of Idss&Vp. Application of Diode as clipper & clamper. Plot gain- frequency characteristic of two stage RC coupled amplifier & calculate its bandwidth and compare it with theoretical value. Plot gain- frequency characteristic of emitter follower & find out its input and output resistances. Plot input and output characteristics of BJT in CB, CC and CE configurations. Find their h- parameters. Study half wave rectifier and effect theoretical & practical ripple factor. Study bridge rectifier and measure the effect of filter network on DC voltage output and ripple factor. 	
30	BTEE3 08	Electronic Measurement & Instrumentation Lab	Electrical Circuit Lab	Syllabus Change Code Change
30			 Draw the circuit symbols. Verify theorems for A. C. & D. C. circuits. 	
30		Instrumentation Lab1. Measurement of strain/ force with	 Draw the circuit symbols. Verify theorems for A. C. & D. C. circuits. PSPICE Programs for Circuit Analysis: 	Change
30		 Instrumentation Lab Measurement of strain/ force with the help of strain gauge load cell Measurement of displacement with 	 Draw the circuit symbols. Verify theorems for A. C. & D. C. circuits. PSPICE Programs for Circuit Analysis: a. DC: Analysis resistor networks to determine node voltages, components voltages, and component currents. 	Change
30		 Instrumentation Lab Measurement of strain/ force with the help of strain gauge load cell Measurement of displacement with the help of LVDT Plot V-I characteristics & measure open circuit voltage & short 	 Draw the circuit symbols. Verify theorems for A. C. & D. C. circuits. PSPICE Programs for Circuit Analysis: a. DC: Analysis resistor networks to determine node voltages, components voltages, and component currents. b. DC: Analysis of resistor networks that have several voltage and current sources 	Change
30		 Instrumentation Lab Measurement of strain/ force with the help of strain gauge load cell Measurement of displacement with the help of LVDT Plot V-I characteristics & measure open circuit voltage & short circuit current of a solar panel. Measure unknown inductance 	 Draw the circuit symbols. Verify theorems for A. C. & D. C. circuits. PSPICE Programs for Circuit Analysis: a. DC: Analysis resistor networks to determine node voltages, components voltages, and component currents. b. DC: Analysis of resistor networks that have several voltage and current sources and variable load resistors. 	Change
30		 Instrumentation Lab Measurement of strain/ force with the help of strain gauge load cell Measurement of displacement with the help of LVDT Plot V-I characteristics & measure open circuit voltage & short circuit current of a solar panel. Measure unknown inductance capacitance resistance using 	 Draw the circuit symbols. Verify theorems for A. C. & D. C. circuits. PSPICE Programs for Circuit Analysis: a. DC: Analysis resistor networks to determine node voltages, components voltages, and component currents. b. DC: Analysis of resistor networks that have several voltage and current sources and variable load resistors. c. Transient: Analysis of RC & RL circuits to produce tables of component 	Change
30		 Instrumentation Lab Measurement of strain/ force with the help of strain gauge load cell Measurement of displacement with the help of LVDT Plot V-I characteristics & measure open circuit voltage & short circuit current of a solar panel. Measure unknown inductance capacitance resistance using following bridges	 Draw the circuit symbols. Verify theorems for A. C. & D. C. circuits. PSPICE Programs for Circuit Analysis: a. DC: Analysis resistor networks to determine node voltages, components voltages, and component currents. b. DC: Analysis of resistor networks that have several voltage and current sources and variable load resistors. c. Transient: Analysis of RC & RL circuits to produce tables of component voltage & current levels for a given set of time instants & to produce graphs of voltages & currents 	Change
30		 Instrumentation Lab Measurement of strain/ force with the help of strain gauge load cell Measurement of displacement with the help of LVDT Plot V-I characteristics & measure open circuit voltage & short circuit current of a solar panel. Measure unknown inductance capacitance resistance using following bridges	 Draw the circuit symbols. Verify theorems for A. C. & D. C. circuits. PSPICE Programs for Circuit Analysis: a. DC: Analysis resistor networks to determine node voltages, components voltages, and component currents. b. DC: Analysis of resistor networks that have several voltage and current sources and variable load resistors. c. Transient: Analysis of RC & RL circuits to produce tables of component voltage & current levels for a given set of time instants & to produce graphs of voltages & currents versus time. d. AC: Analysis of impedance networks to determine the magnitude & phase of node voltages, 	Change
30		 Instrumentation Lab Measurement of strain/ force with the help of strain gauge load cell Measurement of displacement with the help of LVDT Plot V-I characteristics & measure open circuit voltage & short circuit current of a solar panel. Measure unknown inductance capacitance resistance using following bridges	 Draw the circuit symbols. Verify theorems for A. C. & D. C. circuits. PSPICE Programs for Circuit Analysis: a. DC: Analysis resistor networks to determine node voltages, components voltages, and component currents. b. DC: Analysis of resistor networks that have several voltage and current sources and variable load resistors. c. Transient: Analysis of RC & RL circuits to produce tables of component voltage & current levels for a given set of time instants & to produce graphs of voltages & currents versus time. d. AC: Analysis of impedance networks to determine the magnitude & 	Change

	 8. Study the working of Q-meter and measure Q of coils 9. Measure the speed of a Table Fan using stroboscope. 10. Study the working of DIGITAL STORAGE CRO 11. Study of Phase shift Oscillator. 	 currents in resonant circuits & produce. voltage and current verses frequency graphs. 5. Programs for Circuit Analysis: a. Calculate the resistance of a conductor, given its dimensions & resistivity or determine the change in conductor resistance when the temp changes. b. D.C.: Analysis of resistor networks to determine all junction voltages, component voltages, and component currents.Transient: c. Analysis RC & RL circuits to produce tables of component voltage & current levels for agiven set of time instants. 	
		6. Convert Y-connected resistor networks to delta-connected circuits.	
31 BTEE3 09	 Object Oriented Programming Lab Define a class to represent a bank account. Include the following members: Data members : Name of the depositor, Account number, Type of account, Balance amount in the account. Member functions : To assign initial values, To deposit an amount, To withdraw an amount after checking the balance, To display name and balance. Write a main program to check the working. Create two classes DM and DB which store the values of distances. DM stores distances in metres and centimetres and DB in feet and inches. Write a program that can read values for the class objects and add one object of DM with another object of DB. Use a friend function to carry out the addition operation. The object that stores the results may be a DM object or DB object, depending on the units in which the results are required. The display should be in the format of feet and inches or metres and centimetres depending on the object of display. Write a function power() to raise a number m to a power n. The function takes a int value for m and int value for n, and returns the result correctly. Use a default value of 2 for n to make the function to calculate squares	 Electronics Engineering Design Lab To design the following circuits, assemble these on bread board and test them. Simulation of these circuits with the help of appropriate software. Op-Amp characteristics and get data for input bias current measure the output-offset voltage and reduce it to zero and calculate slew rate. Op-Amp in inverting and non-inverting modes. Op-Amp as scalar, summer and voltage follower. Op-Amp as differentiator and integrator. Design LPF and HPF using Op-Amp 741 Design Band Pass and Band reject Active filters using Op-Amp 741. Design Oscillators using Op-Amp (i) RC phase shift (ii) Hartley (ii) Colpitts Design Triangular & square wave generator using 555 timer. Design Amplifier (for given gain) using Bipolar Junction Transistor. 	New course

		when this argument is omitted.	
		Write a main() the gets the values	
		of m and n from the user to test	
		the function. Write another	
		function that takes a double value	
		for m. Both the functions should	
		have the same name. Use the	
		concept of function overloading.	
	4)		
	4)	Define a class String that could	
		work as a user-defined string	
		type. Include constructors that will enable to create an	
		uninitialized string	
		String s1; // string with length 0	
		And also to initialize an object	
		with a string constant at the time	
		of creation like	
		String s2("Well done!");	
		Include a function that adds two	
		strings to make a third string.	
		Note that the statement	
		s2 = s1;	
		will be perfectly reasonable	
		expression to copy one string to	
		another.	
	5)	W7.'	
	5)	Write a program to implement	
		stack operations using OOP	
		concepts.	
	0	Create a class Float Obi that	
	6)	Create a class Float Obj that	
		contains one float data member.	
		Overload all the four arithmetic	
		operators so that they operate on the abjects of Elect Obj	
		the objects of Float Obj.	
	7)	Write a program to implement	
	')	operator overloading for complex	
		number operations.	
		number operations.	
	8)	Write a program for matrix	
	0)	multiplication using the concept	
		of friend operator overloading.	
		or mena operator overloading.	
	9)	Write a program to implement the	
	-,	inheritance property by using the	
		example of bank, where Bank is a	
		base class and Saving and	
		Current are two classes derived	
		from bank. Member functions like	
		deposit(), withdraw(), and	
		display() should be implemented.	
		- · · · *	
	10)	Create a base class called shape .	
		Use this class to store two double	
		type values that could be used to	
		compute the area of figures.	
		Derive two specific classes called	
		triangle and rectangle from the	
		base shape. Add to the base	
		class, a member function	
		get_data() to initialize base class	

		 data members and another member function display_area() to compute and display the area of figures. Make display_area() as a virtual function and redefine this function in the derived classes to suit their requirements. Using these three classes design a program that will accept dimensions of a triangle or rectangle interactively and display the area. 11) Write a program to demonstrate how to read and write class object. 		
32	BTEE3	Electrical Circuit Lab	C++ Programming Lab	New course
	10	 Verification of Tellegens Theorem. Verification of Thevenin's and Norton's Theorem. Verification of compensation Theorem. Verification of Maximum Power Transfer theorem. Verification of Reciprocity theorem. Measurement of self inductance of a coil. Verification of Miller's Theorem. Transient response of RL and RC circuits for DC input. Frequency response of series and parallel resonance circuits. Frequency response of single tuned coupled circuits. Verification of Millman's Theorem 	 To write a simple program for understanding of C++ program structure without any CLASS declaration. Program may be based on simple input output, understanding of keyword using. Write a C++ program to demonstrate concept of declaration of class with public & private member, constructors, object creation using constructors, object creation using constructors, access restrictions, defining member functions within and outside a class. Scope resolution operators, accessing an object's data members and functions through different type of object handle name of object, reference to object, pointer to object, assigning class objects to each other. Program involving multiple classes (without inheritance) to accomplish a task. Demonstrate composition of class. Demonstration Friend function friend classes and this pointer. Demonstration of restrictions an operator overloading, operator functions as member function, overloading stream insertion and stream extraction, operators, overloading operators etc. Demonstration use of protected members, public & private protected classes, multi- level inheritance etc. Demonstrating multiple inheritance, virtual functions, virtual base classes, abstract classes. 	
33	BTEE3 11	Humanities & Social Science Unit I	Humanities & Social Science Unit 1	No Change

 economic problems, positive and normative approaches, economic systems-socialism and capitalism. Unit IV Microeconomics: Law of demand supply, utility approach, indifference curves, elasticity of demand and supply and applications, consumer surplus, Law of returns to factors and product–National income and its measurement, Simple Keynesian theory, simple multiplier, money and banking. Meaning, concept of international trade, determination of exchange rate, Balance of payments. 	Syllabus
normative approaches, economic systems- applications, consumer surplus, Law of	

UNIT 2		Wien Bridge and crystal oscillators	
01111 2	FEEDBACK AMPLIFIERS:	The Druge and erjour openhuoro	
	Classification, Feedback concept,	Astable, monostable and	
	Transfer gain with feedback,	bistablemultivibrators. Schmitt trigger.	
	General characteristics of	Blocking	
	negative feedback amplifiers. Effect of feedback on noise,	Oscillators	
	distortion, gain, input and output	UNIT-III	
	impedance of the amplifiers,	High Frequency Amplifiers: Hybrid Pi	
	Analysis of voltage-series,	model, conductances and capacitances of	
	voltage-shunt, current-series and	hybrid Pi model, high frequency analysis of	
	current-shunt feedback amplifier.	CE amplifier	
UNIT 3	Stability criterion.	Gain handwidth product unity gain	
UNIT 3	Small Signal Amplifiers At Low	Gain bandwidth product, unity gain frequency fT.Emitter follower at high	
& High	Frequency:	frequencies.	
	At Low Frequency: Analysis of	1	
	FET, Temperature compensation	UNIT-IV	
	methods, Analysis of Direct	Tuned Amplifier: Band pass amplifier,	
	Coupled amplifiers and	Parallel resonant circuits, Band Width of	
	differential amplifiers frequency response and midband gain,	Parallel resonant circuit. Analysis of Single Tuned Amplifier, Primary &	
	gains at low and high frequency.	Secondary Tuned Amplifier with BJT & FET	
	Miller's Theorem. Cascading	, r	
	Transistor amplifiers, Darlington	Double Tuned Transformer Coupled	
	pair. Source follower.	Amplifier. Stagger Tuned Amplifier. Pulse	
	At High frequency equivalent	Response of such Amplifier. Class C tuned	
	circuits for BJT and FET amplifiers, Calculation of Lower	amplifiers, Shunt Peaked Circuits for Increased Bandwidth.	
	and Higher cutoff frequencies,	increased Bandwidth.	
	Hybrid Pi model, conductances	UNIT-V	
	and capacitances of hybrid Pi	Power Amplifiers: Classification, Power	
	model, high frequency analysis of	transistors & power MOSFET (DMOS,	
	CE amplifier, gain-bandwidth	VMOS). Output power, power dissipation	
	product. Emitter follower at high frequencies.	and efficiency analysis of Class A, class B, class AB, class C, class D and class E	
UNIT 4	nequencies.	amplifiers as output stages.	
01111	Power Amplifiers: Power	umpriners us output surges.	
	amplifier circuits, Class A output	Pushpull amplifiers with and without	
	stage, class B output stage and	transformers. Complementary symmetry &	
	class AB output stages, class C	quasi complimentary symmetry amplifiers	
	amplifiers, push pull amplifiers with and without transformers.		
	Complementary symmetry &		
	quasi complimentary symmetry		
	amplifiers MOSFET Power		
	amplifiers, Thermal stability of		
	Power amplifiers, heat sink		
UNIT 5	design.		
01111 3	Tuned Amplifier - Band Pass		
	Amplifier, Parallel resonant		
	Circuits, Band Width of Parallel		
	resonant circuit. Analysis of		
	Single Tuned Amplifier, Primary		
	& Secondary Tuned Amplifier with BJT & FET. Double Tuned		
	Transformer Coupled Amplifier.		
	Stagger Tuned Amplifier. Pulse		
	Response of such Amplifier.		
	Shunt Peaked Circuits for		
	Increased Bandwidth. Instability		

35 BTEE4 Circuit Analysis-II unit I Circuit Analysis-II Unit I No Cl 35 BTEE4 Circuit Analysis-II Unit I Circuit Analysis-II Unit I No Cl 36 BTEE4 Circuit Analysis-II Unit I Attenuators: - Introduction latice attenuator, T. type and II type attenuator, I. L. type and II type attenuator. Circuit Analysis-II UNIT-I No Cl 36 BTEE4 Circuit Analysis-II Unit II No Cl No Cl 37 Two Port No Cl No Cl 38 Two Port No Cl No Cl 39 Throduction, two port parameters, interconactions of two port networks, the ladder network, image impedance, image transfer faction. No Cl No Cl 39 Deveen the parameters, interconactions of two port networks, the ladder network, image impedance, image transfer faction. No Cl No Cl 39 No Cl No Cl No Cl No Cl 30 Time domain behavior from pole and zero plot. Procedure for finding network, factionis for general two terminal pair networks. Separation property for reactive networks. Stafesis: Hurwitz polynomial, positive real function, reactive network, foster and Cauer form. Not Cl 31 Network Synthesis:- Hurwitz polynomial, positive real faction, reactive network, foster I and I form & cauer I and II form of wo tractance function, popication to L-C network, intenoin apapinase shif in symmetrical T and pi networks.	
35 BTEE4 Circuit Analysis-II No CI 36 02 Circuit Analysis-II Introduction lattice attenuator, 1, - type and balanced attenuator, 1, - type and balanced attenuator, 1, - type and balanced attenuator. Circuit Analysis-II Introduction (No CI Unit II Two Port Networks Introduction, two port parameters; (impedance, admittance, hybrid, ABCD, inverse transmission parameters, intercentions of two pri metworks, the ladder network image impedance, image transfer fuction. UNIT-II Network Functions; Terminals and terminal pairs, driving point impedance transfer functions, poles and zero plot. Procedure for finding network interconnections of two port networks, the ladder network image impedance, image transfer fuction, & transfer function, pole & zeros, time domain behavior from pole and zero plot procedure for finding networks. Separation property for reactive networks. Separation for reactance function. VINT-IV Network Synthesis: - Hurwitz polynomial, positive real functions, reactive network, insponential form of fourier coefficients, wave form symmetry, exponential form form & cauer 1 and II form VINT-IV Net Work Synthesis: - Hurwitz polynomial, positive real function, reactive network, foster 1 and II form & cauer 1 and II form Transformer equivalent, inter connection of two port networks, image impedance, image transfer function, application to L-C network, and pin etworks.	
02 Unit I Attenuators:- Introduction lattice attenuator, T- type and II type attenuator, L- type attenuator, Jadder type attenuator, L- type attenuator, Jadder type attenuator. Impedance and Admittance, Functions: Terminals and terminal pairs, driving point impedance transfer functions, poles and zeros. Restrictions on pole and zero location in splane. Unit II Two Port Networks interconnections of two print metworks, image impedance , image transfer functions, poles and zero pole. Procedure for finding network functions for general two terminal pair networks. The ladder network, image impedance in pole and zero pole. Procedure for finding network functions for general two terminal pair networks. The four-reactance function. VINIT-II Network Functions And functions for general two terminal pair network. Transformere functions, reactive networks. Separation property for reactive networks. Separation property for reactive networks. Separation property for reactance function. VINIT-II Network Functions And functions for general two terminal pair network, trigonometric furrier series. Necessary condition for driving point functions, for general two terminal pair network, trigonometric furrier series, evaluation of fourier coefficients, wave form symmetry, exponential form of golyner series. Unit IV Network Synthesis: Hurwitz Noty parameters (impedance of two ports. Network Synthesis: Hurwitz Noty parameters (impedance of metion filters, image impedance of metion and phase shift in symmetrical T and pi networks.	
InterventionInterventionInterventionLetter and the interventionIntroduction, two port parameters (impedance, admittance, shybrid parameters), inverse hybrid parameters, inverse hybrid parameters, inverse hybrid parameters, inverse hybrid parameters, inverse hybrid parameters, inverse hybrid parameters, interclationship between the parameters interconnections of two port networks, the ladder network, inage impedance diriving point function, & transfer functions, reactive networks, the ladder network, interclation, pole &zeros, time domain behavior from pole and zero plot of ourier coefficients, wave form symmetry, exponential form diriving polynomial, positive real function, furtier series, evaluation of fourier coefficients, wave form symmetry, exponential form diriving polynomial, positive real function, furtier series, evaluation of fourier coefficients, wave form symmetry, exponential form diriving polynomial, positive real function, fourier coefficients, wave form symmetry, exponential form diriving polynomial, positive real function, fourier coefficients, wave form symmetry, exponential form diriving polynomial, positive real function, fourier coefficients, wave form symmetry, exponential form diriving polynomial, positive real function, reactive network, fister 1 and 11 form & cauer 1 and 11 form two fullers, image impedance of m- derived halforInterventeres transformeters transformeters transformeter and their inter relations Equivalent, inter connection of two port networks, in symmetrical T and pi networks.	ange
 Introduction, Jadder type and balanced attenuator. Unit II Two Port Networks: Introduction, two port parameters (impedance, admittance, shybrid, ABCD, inverse hybrid parameters), interrelationship between the parameters, interconnections of two port networks, the ladder network, image impedance, image transfer fuction. Unit II Network Functions And Fourier Series-Necessary (condition, & transfer fuction, appir network, trigonometric furrier series, evaluation of the origination origination of the origination of the origination origination origination origination or the origination originat	
Image: Section of the section of th	
Unit IIUnit IITwo Port Networks Introduction, two port parameters, (impedance, admittance, hybrid) parameters), interrelationship between the parameters, interconnections of two port networks, the ladder network, image impedance, image transfer fuction.UNIT-II Network Functions And Fourier Series:-Necessary condition for driving point function, & transfer function, pole ad zero plot. Procedure for finding networks tuctions for general two terminal pair networks. Separation property for reactive networks. Separation for actance function.Unit IIINetwork Function spain function, de transfer fuction, pole &zzeros, time domain behavior from pole and zero plot, fructoins for general two terminal pair network, trigonometric furrier series, evaluation of fourier coefficients, wave form symmetry, exponential form of fourier series, evaluation of fourier series, foster 1 and II form & cauer 1 and II form we derived filters, image impedance of m- derived half(of unit V Filters:- Constant k filters, image impedance of m- derived half(of unicon, application to L-C network, attenuation and phase shift in symmetrical T and pi networks.	
TwoPortNetworksIntroduction, two port parameters, (impedance, admittance, hybrid ABCD, inverse transmission parameters, inverse hybrid parameters, interconnections of two port networks, the ladder network, image impedance, image transfer fuction.Time domain behavior from pole and zero plot. Procedure for finding network functions for general two terminal pair networks Suparation property for reactive networks. Separation property for reactive networks. Suparation property for reactance function.Vinit IVNetwork Synthesis:- furrier series, evaluation of fourier coefficients, wave form symmetry, exponential form of formier series.UNIT-IV Two Port General Networks: Two port parameters (impedance, admittance, hybrid, ABCD parameters) and their inter telations. Equivalence of two ports.Unit IVFilters:- Constant k filters , the m-derived filters, image impedance of m- derieved half(of imeton, adplase shift in symmetrical T and pi networks.	
 Introduction, two port parameters (impedance, admittance, hybrid, ABCD, inverse transmission parameters, inverse hybrid parameters), interrelationship between the parameters, interconnections of two port networks, the ladder network, image impedance, image transfer fuction. Unit III Network Functions And Fourier Series:-Necessary condition for driving point function, & transfer fuction, pole ad zero plot, procedure for finding network. The four-reactance function for driving point functions for general two terminal pair networks, trigonometric furrier series, evaluation of fourier series, evaluation of fourier series, evaluation of fourier series. Unit IV Network Synthesis:- Hurwitz polynomial, positive real functions, reactive networks in Foster and Cauer form. Unit IV Network Synthesis:- Hurwitz polynomial, positive real function, the four-reactance function form of reactance networks. Synthesis of R-L and R-C networks in Foster and Cauer form. Unit IV Network Synthesis:- Hurwitz polynomial, positive real function, reactive network, forster 1 and II form & cauer I and II form Unit V Filters:- Constant k filters, image impedance of m- derived half(or there are thered half(or there), image impedance, of meder thered half(or there). Tansformer equivalent, inter connection of two port networks. The ladder network, image impedance, image transfer function application to L-C network. Tansformer equivalent, inter connection of two port networks. 	
 (impedance, admittance, hybrid, ABCD, inverse transmission parameters, inverse hybrid parameters, inverse hybrid parameters, interconactions of two port networks, the ladder network, image impedance, image transfer fuction. Unit III Network Functions And Fourier Series:-Necessary condition for driving point function, & transfer fuction, pole and zero plot, procedure for finding network Suthesis: Hurwitz polynomial, positive real functions, reactive networks. Separation property for reactince networks. Separation property for reactive networks. Separation property for reactive networks. Separation property for reactance function. Foster form of reactance networks. Cauer form of reactance networks. Synthesis of R-L and R-C networks in Foster and Cauer forms. Unit IV Network Synthesis:- Hurwitz polynomial form of fourier coefficients, wave form symmetry, exponential form of form & cauer I and II form Unit V Filters:- Constant k filters, the m-derived filters, image impedance of m- derived half(or the filters, image impedance of m- derived half(or the filters, image impedance of m- derived half(or the filters). 	
 parameters, inverse hybrid parameters), interrelationship between the parameters. Time domain behavior from pole and zero plot. Procedure for finding network functions for general two terminal pair networks. The ladder networks Unit III Network Functions And Fourier Series:-Necessary condition for driving point function, & transfer fuction, procedure for finding network. The four-reactance function form ople and zero plot , procedure for finding network fuctoins for general two terminal pair network, trigonometric furrier series, evaluation of fourier coefficients, wave form symmetry, exponential form of reactance networks: Two port gorrier series. Unit IV Network Synthesis:- Hurwitz polynomial, positive real function form acauer I and II form Unit V Filters:- Constant k filters , the m-derived filters, image impedance of m- derieved half(or 	
between the parameters, interconnections of two port networks, the ladder network, image impedance, image transfer fuction. Unit III Network Functions And Fourier Series:-Necessary condition for driving point function, & transfer fuction, pole &zeros, time domain behavior from pole and zero plot procedure for finding network, Separation property for reactive networks. Separation property for reactive networks. Suphresis: Hurwitz polynomial, positive real functions, reactive networks. Separation property for reactive networks. Suphresis: Hurwitz polynomial, positive real function, reactance function form symmetry, exponential form of foyrier series. Unit IV Network Synthesis:- Hurwitz polynomial, positive real fuction, reactive network, foster I and II form & cauer I and II form Unit V Filters:- Constant k filters, the m-derived filters, image impedance of m- derived half(or	
 interconnections of two port networks, the ladder network, image impedance , image transfer fuction. Unit III Network Functions And Fourier Series:-Necessary condition for driving point function, & transfer fuction, pole and zero plot & Zeros, time domain behavior from pole and zero plot , procedure for finding network fuctoris for general two terminal pair network, trigonometric furrier series, evaluation of fourier coefficients, wave form symmetry, exponential form of foyrier series. Unit IV Network Synthesis:- Hurwitz polynomial, positive real function, eactive network, foster I and II form Unit V Filters:- Constant k filters , the m-derived filters, image impedance of m- derieved half(or 	
 networks, the ladder network, image impedance , image transfer fuction. Unit III Network Functions And Fourier Series:-Necessary condition for driving point function, & transfer fuction, pole & zeros, time domain behavior from pole and zero plot , procedure for finding network fuctorins for general two terminal pair network, trigonometric furrier series, evaluation of fourier coefficients, wave form symmetry, exponential form of foyrier series. Unit IV Network Synthesis:- Hurwitz polynomial, positive real function, reactive network, foster I and II form Unit V Filters:- Constant k filters , the m-derived filters, image impedance of m- derieved half(or 	
fuction.UNIT-IIINetworkFunctionsAndFourierSeries:-Necessary condition for driving point function, & transfer fuction, pole &zeros, time domain behavior from pole and zero plot, procedure for finding network fuctoins for general two terminal pair network, trigonometric furrier series, evaluation of of ourier coefficients, wave form symmetry, exponential form of foyrier series.UNIT-III Network Synthesis:- Hurwitz polynomial, positive real fuction, reactive network, foster I and II form & cauer I and II formUNIT-IU Two Port General Networks: Two port parameters (impedance, admittance, hybrid, ABCD parameters) and their inter relations. Equivalence of two ports.Unit VFilters:- Constant k filters, image impedance of m- derived halftorTransformer equivalent, inter connection of two port networks. The ladder network, inage impedance, image transfer function, application to L-C network, attenuation and phase shift in symmetrical T and pi networks.	
Unit IIINetwork Functions Fourier condition for driving point function, & transfer fuction, pole &zeros,, time domain behavior from pole and zero plot , procedure for finding network, fuctoins for general two terminal pair network, trigonometric furrier series, evaluation of fourier coefficients, wave form symmetry, exponential form of 	
NetworkFunctionsAnd Fourierpositive real functions, reactive networks. Separation property for reactive networks. Separation property for reactive networks. Separation property for reactive networks. The four-reactance function.Form poleand zero plot , procedure for finding network fuctoins for general two terminal pair network, trigonometric furrier series, evaluation of fourier coefficients, wave form symmetry, exponential form of foyrier series.Foster form of reactance networks. Cauer form of reactance networks. Synthesis of R-L and R-C networks in Foster and Cauer forms.Unit IVNetwork Synthesis:- form & cauer I and II form form & cauer I and II formUNIT-IV Transformer equivalent, inter connection of two port networks. The ladder network, image impedance of m- derived half(or	
FourierSeries:-Necessary conditionnetworks. Separation property for reactive networks. Separation property for reactive networks. The four-reactance functiondetermine determine pairdomain behavior from pole and zero plot , procedure for finding network fuctoins for general two terminal pair network, trigonometric furrier series, evaluation of fourier coefficients, wave form symmetry, exponential form of foyrier series.Foster form of reactance networks. Cauer form of reactance networks. Synthesis of R-L and R-C networks in Foster and Cauer forms.Unit IV Network Synthesis:-UNIT-IV Two Port General Networks: Two port parameters (impedance, admittance, hybrid, ABCD parameters) and their inter relations. Equivalence of two ports.Unit V Filters:-Filters:-Constant k filters , the m-derived filters, image impedance of m- derieved half(orTransformer equivalent, inter connection of two port networks. The ladder network, image impedance, image transfer function, application to L-C network, attenuation and phase shift in symmetrical T and pi networks.	
 bit is contained in the driving point function, & transfer fuction, pole & zeros, time domain behavior from pole and zero plot, procedure for finding network fuctoins for general two terminal pair network, trigonometric furrier series, evaluation of fourier coefficients, wave form symmetry, exponential form of foyrier series. Unit IV Network Synthesis:- Hurwitz polynomial, positive real fuction, reactive network, foster I and II form & cauer I and II form Unit V Filters:- Constant k filters, the m-derived filters, image impedance of m- derieved half(or 	
Allerentiation, certainster ration, poil&zeros,, time domain behavior from pole and zero plot, procedure for finding network fuctoins for general two terminal pair network, trigonometric furrier series, evaluation of fourier coefficients, wave form symmetry, exponential form of foyrier series.Foster form of reactance networks. Cauer form of reactance networks in Foster and Cauer forms.Unit IVNetwork Synthesis:- form & cauer I and II form & cauer I and II formUnit VFilters:- Constant k filters, impedance of m- derived filters, impedance of m- derived half(orTamo Foster and Cauer form of reactance networks. Synthesis of R-L and R-C networks in Foster and Cauer form of reactance networks in Foster and Cauer forms.Unit VNetwork Synthesis:- polynomial, positive real fuction, reactive network, foster I and II form & cauer I and II formTransformer equivalent, inter connection of two port networks. The ladder network, image impedance, image transfer function, application to L-C network, attenuation and phase shift in symmetrical T and pi networks.	
 from pole and zero plot , procedure for finding network fuctoins for general two terminal pair network, trigonometric furrier series, evaluation of fourier coefficients, wave form symmetry, exponential form of foyrier series. Unit IV Network Synthesis:- Hurwitz polynomial, positive real fuction, reactive network, foster I and II form & cauer I and II form Unit V Filters:- Constant k filters , the m-derived filters, image impedance of m- derieved half(or 	
Image intervalR-L and R-C networks in Foster and Cauer forms.fuctoins for general two terminal pair network, trigonometric furrier series, evaluation of fourier coefficients, wave form symmetry, exponential form of foyrier series.R-L and R-C networks in Foster and Cauer forms.Unit IV Network Synthesis:-UNIT-IV Two Port General Networks: Two port parameters (impedance, admittance, hybrid, ABCD parameters) and their inter relations. Equivalence of two ports.Unit IV Network cauer I and II form & cauer I and II form Unit VTransformer equivalent, inter connection of two port networks. The ladder network, image impedance, image transfer function, application to L-C network, attenuation and phase shift in symmetrical T and pi networks.	
pairnetwork, trigonometric furrier series, evaluation of fourier coefficients, wave form symmetry, exponential form of foyrier series.forms.Unit IVTwo Port General Networks: Two port parameters (impedance, admittance, hybrid, ABCD parameters) and their inter relations. Equivalence of two ports.Unit IVNetwork Synthesis:- Hurwitz polynomial, positive real fuction, reactive network, foster I and II form & cauer I and II formTransformer equivalent, inter connection of two port networks. The ladder network, image impedance, image transfer function, application to L-C network, attenuation and phase shift in symmetrical T and pi networks.	
fourier coefficients, wave form symmetry, exponential form of foyrier series.UNIT-IV Two Port General Networks: Two port parameters (impedance, admittance, hybrid, ABCD parameters) and their inter relations. Equivalence of two ports.Unit IV Network Synthesis:- Hurwitz polynomial, positive real fuction, reactive network, foster I and II form & cauer I and II formTransformer equivalent, inter connection of two port networks. The ladder network, image impedance, image transfer function, application to L-C network, attenuation and phase shift in symmetrical T and pi networks.	
Inductive coefficients, wave form symmetry, exponential form of foyrier series.Two Port General Networks: Two port parameters (impedance, admittance, hybrid, ABCD parameters) and their inter relations. Equivalence of two ports.Unit IV Network Synthesis:- Hurwitz polynomial, positive real fuction, reactive network, foster I and II form & cauer I and II formTransformer equivalent, inter connection of two port networks. The ladder network, image impedance, image transfer function, application to L-C network, attenuation and phase shift in symmetrical T and pi networks.	
foyrier series.Unit IVparameters (impedance, admittance, hybrid, ABCD parameters) and their inter relations. Equivalence of two ports.Network Synthesis:-Hurwitz polynomial, positive real fuction, reactive network, foster I and II form & cauer I and II formTransformer equivalent, inter connection of two port networks. The ladder network, image impedance, image transfer function, application to L-C network, attenuation and phase shift in symmetrical T and pi networks.	
Unit IVrelations. Equivalence of two ports.Network Synthesis:- Hurwitz polynomial, positive real fuction, reactive network, foster I and II form & cauer I and II formrelations. Equivalence of two ports.Unit VFilters:- Constant k filters , the m-derived filters, image impedance of m- derieved half(orTransformer equivalent, inter connection of two port networks. The ladder network, image impedance, image transfer function, application to L-C network, attenuation and phase shift in symmetrical T and pi networks.	
polynomial, positive real fuction, reactive network, foster I and II form & cauer I and II formTransformer equivalent, inter connection of two port networks. The ladder network, image impedance, image transfer function, application to L-C network, attenuation and phase shift in symmetrical T and pi networks.	
reactive network, foster I and II form & cauer I and II formTransformer equivalent, inter connection of two port networks. The ladder network, image impedance, image transfer function, application to L-C network, attenuation and phase shift in symmetrical T and pi networks.	
form & cauer I and II form two port networks. The ladder Unit V Filters:- Constant k filters, the m-derived filters, image filters, image impedance of m- derieved half(or and pi networks.	
Filters: - Constant k filters, the m-derived filters, image impedance of m- derived half(or	
m-derived filters, image impedance of m- derived half(or	
impedance of m- derieved half(or and pi networks.	
T T T T T T T T T T T T T T T T T T T	
L) sections, composite filters, band pass& band elimination UNIT-V	
filters lattice filters barless's Two Port Reactive Network (Filters):	
bisections theorem Constant K filters. The m-derived filter. Image impedance of m-derived half (or L)	
sections, composite filters.	
Bands pass and band elimination filters. The	
problem of termination, lattice filters,	
Barlett's bisection theorem. Introduction to	
active filters.	

36	BTEE4		Machines-II	Electrical Measurements UNIT-I	Syllabus change
	03	Unit I	Polyphase Induction Mechines:	Measuring Instruments: Moving coil,	Code change Title change
			Construction, principle of	moving iron, electrodynamic and induction	The charge
			operation, slip, phasor diagram,	instruments-construction, operation, torque	
			equivalent circuits, expression for	equation and errors. Applications of	
			torque, and output power ,slip torque characteristics, effect of	instruments for measurement of current, voltage, single-phase power and singlephase	
			variation of supply voltage and	energy.	
			rotor resistance on the		
			characteristics , Circle digram.	Errors in wattmeter and energy meter and	
			Predetermination of	their compensation and adjustment.	
			characteristics from the circuit diagram,Drawing circle diagram	Testing and calibration of single-phase energy meter by phantom loading.	
			from design parameters and no	energy meter by phantom loading.	
			load and blocked rotor test data.	UNIT-II	
			Starting of Induction motors,	Polyphase Metering: Blondel's Theorem	
			Direct on line starter, Star-Delta	for n-phase, p-wire system. Measurement	
			starter and autotransformer starter for cage induction motor by	of power and reactive kVA in 3-phase balanced and unbalanced systems:	
			varying supply voltage, supply	Onewattmeter,	
			frequency and pole changing,	two-wattmeter and three-wattmeter methods.	
			speed control of slip ring	3-phase induction type	
			induction motor by varying rotor	energy meter. Instrument Transformers:	
		Unit II	resistance.	Construction and operation of current and potential transformers.	
		Unit II	Special Machines : High	potential transformers.	
			torque induction motor, double	Ratio and phase angle errors and their	
			cage and deep bar rotor	minimization. Effect of variation of power	
			construction. Mains operated and	factor, secondary burden and frequency on	
			self excited induction generators. Hysteresis motor,Reluctance	errors. Testing of CTs and PTs. Applications of CTs and PTs for the	
			motor and stepper motor,	measurement of current, voltage, power and	
			brushless motors.	energy.	
		Unit III			
			Single Phase Induction Motors: Principle of operation, double	UNIT-III Potentiometers: Construction, operation	
			revolving field theory, Equivalent	and standardization of DC	
			circuit, performance calculations	potentiometers- slide wire and Crompton	
			and characteristics, Starting	potentiometers. Use of potentiometer for	
			methods, Maximuma starting torque conditions in single- phase	measurement of resistance and voltmeter and ammeter calibrations.	
			induction motors.	annieter canorations.	
		Unit IV		Volt ratio boxes. Construction, operation and	
			Synchronous Machine: types of	standardization of AC potentiometer	
			Exciters for synchronous	- in-phase and quadrature potentiometers.	
			machines, MMF and short circuit characteristics, Leakage	Applications of AC potentiometers.	
			reactances, Synchronous	UNIT-IV	
			reactance, Phasor digram under	Measurement of Resistances:	
			loaded conditions, Load	Classification of resistance. Measurement of	
			characteristics, Predetermination of regultation by EMF and Portier	medium resistances – ammeter and voltmeter method, substitution method,	
			triangle methods for non-salient	Wheatstone bridge method.	
			pole aternators. Steady state		
			power flow equations, Power	Measurement of low resistances –	
			angle characteristics, Constant	Potentiometer method and Kelvin's double	
			excitation and constant power output, Circle diagram for	bridge method. Measurement of high resistance: Price's Guard-wire method.	
			synchronous machines. Two	Measurement of earth resistance.	
			reation theory for sailent pole		
			alternators and pre-determination	UNIT-V	

37	BTEE4	Unit V	for regulation, slip test, V cures, inverted V cures, compounding curves for synchronous motor.Synchronizing motor, Synchronous condenser. Parallel Operation of Alternators : Synchronizing, Synchroscope, Parallel operation of alternators, Alternator on infinite bus bar, Effect of change of excitation and prime mover input, Expressions for power developed as a function of torque angle, maximum power.	AC Bridges: Generalized treatment of four- arm AC bridges. Sources and detectors. Maxwell's bridge, Hay's bridge and Anderson bridge for self-inductance measurement. Heaviside's bridge for mutual inductance measurement. De Sauty Bridge for capacitance measurement. Wien's bridge for capacitance and frequency measurements. Sources of error in bridge measurements and precautions. Screening of bridge components. Wagner earth device.	Code Change
		UNIT-2	Solar energy: Solar thermal power and it's conversion, Solar collectors, Flat plate, Performance analysis of flat plate collector, Solar concentrating collectors,	Conventional Energy Generation Methods :(i) Thermal Power plants: Basic schemes and working principle. (ii) Gas Power Plants: open cycle and closed cycle gas turbine plants, combined gas & steam plants-basic schemes. (iii) Hydro Power Plants: Classification of hydroelectric plants. Basic schemes of hydroelectric and pumped storage plants. (iv) Nuclear Power Plants: Nuclear fission and nuclear fusion. Fissile and fertile materials. Basic plant schemes with boiling water reactor, heavy water reactor and fast breeder reactor. Efficiencies of various power plants UNIT-II New Energy Sources: Impact of thermal, and hydro end nuclear power stations on	
		UNIT-3	Types of concentrating collectors, Thermodynamic limits to concentration, Cylindrical collectors, Thermal analysis of solar collectors, Solar thermal energy storage, Applications, Water heating, Space heating & cooling, Solar distillation, solar pumping, solar cooking, Greenhouses, Solar power plants. Solar photovoltaic system: Photovoltaic effect, Efficiency of solar cells, Semiconductor materials for solar cells, Solar photovoltaic system, Standards of solar photovoltaic system, Applications of PV system, PV hybrid system. 2 Biogas Photosynthesis, Bio gas production Aerobic and anaerobic bio-conversion process, Raw	 gas, hydro and nuclear power stations on environment. Green House Effect (Global Warming).Renewable and nonrenewable energy sources Conservation of natural resources and sustainable energy systems. Indian energy scene. Introduction to electric energy generation by wind, solar and tidal. UNIT-III Loads and Load Curves: Types of load, chronological load curve, load duration curve, energy load curve and mass curve. Maximum demand, demand factor, load factor, diversity factor, capacity factor and utilization. Power Factor Improvement: Causes and effects of low power factor and advantages of power factor improvement. Power factor improvement using shunt 	

	BTEE4 05	Availability of wind energy in India, wind velocity, Wind machine fundamentals, Types of wind machines and their characteristics, Horizontal and Vertical axis wind mills, Elementary design principles, Coefficient of performance of a wind mill rotor, Aerodynamic considerations in wind mill design, Selection of a wind mill, Wind energy farms, Economic issues, Recent development. 3 UNIT-5 Geothermal energy Structure of earth's interior, Geothermal sites, earthquakes & volcanoes, Geothermal resources, Hot springs, Steam ejection, Principal of working, Types of geothermal station with schematic representation, Site selection for geothermal power plants. Advanced concepts, Problems associated with geothermal conversion. 2	 UNIT-V (i) Tariffs: Objectives of tariffs. General tariff form. Flat demand rate, straight meter rate, block meter rate. Two part tariff, power factor dependent tariffs, threepart tariff. Spot (time differentiated) pricing. (ii) Selection of Power Plants: Comparative study of thermal, hydro, nuclear and gas power plants. Base load and peak load plants. Size and types of generating units, types of reserve and size of plant. Selection and location of power plants. Electrical Machines-II UNIT-1	Code change Syllabus Change
38		INTRODUCTION TO DBMS : Overview and History of DBMS. File System vs. DBMS	AC Machines Fundamentals: Introduction, emf equation, mmf of three phase AC	Change

		Base, and Design with ER Model- Entity vs Attribute, Entity vs Relationship Binary vs. Ternary Relationship and Aggregation vs ternary Relationship Conceptual Design for a Large Enterprise. UNIT 3 RELATIONAL MODEL: Relationship Algebra Selection and Projection, Set Operations, Renaming, Joints, Division, Relation Calculus, Expressive Power of Algebra and Calculus. UNIT 4 SQL AND TRIGGERS: The Forms of a Basic SQL Query, Union, Intersection and Except, Nested Queries, Set-Comparison Operations, Aggregate Operators, Null Values, Triggers and Active Databases. UNIT 5 NORMAL FORMS AND CONCURRENCY CONTROL: Normalization using Functional Dependency, Multivalued dependency and Join dependency. Concurrency Control: Lock Based Protocols, Time Stamped Based Protocols, Deadlock Handling,.	Torque-slip characteristics, losses and efficiency, circle diagram, starting of cage and wound motors, speed control, cogging and crawling, double cage rotor, induction generator, application. UNIT-III (i) Single Phase Induction Motor: Introduction, construction, principal, double revolving field theory, equivalent circuit, performance calculations, starting methods, and their types, torque slip characteristics of various types. ii) Special Machines: Single phase synchronous motor, series motor, universal motor, Stepper motors variable reluctance, permanent magnet and hybrid stepper motors. UNIT-IV Synchronous Generators (Alternators): Introduction, Construction, advantages of rotating field, types of rotors, emf equation, excitation systems, equivalent circuit and their phasor diagrams, voltage regulation, synchronous impedance method, mmf method. Zero power factor method, two reaction theory of salient pole rotor, phasor diagram, power developed and power angle characteristics of salient pole machine, determination of Xd and Xq, synchronization, synchronizing power and torque, parallel operation application. UNIT-V Synchronous Motors: Introduction, construction, principal of operation, starting of synchronous motor, equivalent circuit and phasor diagrams, power and torque, performance calculation, speed torque characteristics, power factor control-effect of change of excitation. V curve and inverted V curve, synchronous condenser and reactors, synchronous phase modifiers, hunting-causes and remedies, applications, synchronous induction motor application.	
39	BTEE4 06	Random ProcessesVariable &Stochastic StochasticUNIT 1PROBABILITY: PROBABILITY: Introduction to theory of probability, Definitions, sample, space & events, Self, joint & conditional probabilities,	Advanced Engineering Mathematics-II UNIT-I Numerical Analysis: Finite differences - Forward backward and central difference. Newton's forward and backward differences interpolation formulae. Sterling's formulae, Lagrange's interpolation formula.	Syllabus Change Title change Code change

40	BTEE4 07	 UNIT 5 STOCHASTIC PROCESSES: Introduction, random process concept, stationary & independence, ergodicity, correlation, functions.Gaussion Random Process, Transmission of Random process through linear systems. Power spectral Density (PSD), Cross Spectral density, white Gaussion Random process. Analog Electronics Lab Plot and study the characteristics of small signal amplifier using FET. To study and perform experiment of Astable Multivibrator and the frequency variation with different parameters. 	Legendre's function of first kind, simple recurrence relations, orthogonal property, Generating functions. UNIT-IV Statistics & Probability: Elementary theory of probability, Baye's theorem with simple applications, Expected value. Theoretical probability distributions – Binomial, Poisson and Normal distributions. UNIT-V Statistics & Probability: Lines of regression, co-relation and rank correlation. 4 Transforms: Z-transforms, its inverse, simple properties and application to difference equations. Analog Electronics Lab 1. Plot gain-frequency characteristics of BJT amplifier with and without negative feedback in the emitter circuit and determine bandwidths, gain bandwidth products and gains at 1kHz with and without negative feedback. 2. Study of series and shunt voltage	No change
		 Infiniti, Rayleighs. conditional distribution & density functions. UNIT 3 MULTIPLE RANDOM VARIABLES :Vector random variable, joint distribution functions, joint probability density function(PDF), Statistical independence, distribution & density function of sum of random variable, one function of one random variable, one function of two random variable, two function of two random variable, two function of two random variable. UNIT 4 OPERATION ON SINGLE & MULTIPLE RANDOM VARIABLES : Mean & variance, moments, chebyshev's inequality, Central limit theorem, characteristic functions &moment generating function, covariance & correlation coefficient of multiple random variables. 	of least squares. UNIT-II Numerical Analysis: Numerical differentiation, numerical integration trapezoidal rule, Simpson's one-third and one eighth rule. Numerical Integration of ordinary differential equations of first order Picard's method, Euler's & modified Euler's methods. Miline's method and Runga Kutta fourth order method. Simple linear difference equations with constant coefficients. UNIT-III Special Functions: Bessel's function of first and second kind, simple recurrence relations, orthogonal property of Bessel functions	
		Statistically dependent & independent events. UNIT 2 RANDOM VARIABLES: Introduction, distribution & density functions, discrete & continuous random variables, special distributions: binominal, Poisson, uniform, exponential, normal, Rayleighs. conditional	Solution of non-linear equations in one variable by Newton Raphson and Simultaneous algebraic equation by Gauss and Regula Falsi method. Solution of simultaneous equations by Gauss elimination and Gauss Seidel methods. Fitting of curves (straight line and parabola of second degree) by method	

41	BTEE4	 To study and perform experiment of Bistable Multivibrator and the frequency variation with different parameters. To study and perform experiment of Monostable Multivibrator and the frequency variation with different parameters. To study and perform experiment of Schmitt trigger binary circuit. To study and perform experiment of RC phase shift oscillator. To study and perform experiment of Hartley oscillator. To study and perform experiment of Colpitt oscillator. Plot frequency response curve for single stage amplifier and to determine gain bandwidth product. 	 regulators and measurement of line and load regulation and ripple factor. 3. Plot and study the characteristics of small signal amplifier using FET. 4. Study of push pull amplifier. Measure variation of output power & distortion with load. 5. Study Wein bridge oscillator and observe the effect of variation in R & C on oscillator frequency. 6. Study transistor phase shift oscillator and observe the effect of variation in R & C on oscillator frequency and compare with theoretical value. 7. Study the following oscillators and observe the effect of variation of C on oscillator frequency: (a) Hartley (b) Colpitts. 8. Design Fabrication and Testing of k-derived filters (LP/HP). 9. Study of a Digital Storage CRO and store a transient on it. 10. To plot the characteristics of UJT and UJT as relaxation. 11. To plot the characteristics of MOSFET and CMOS. 	Syllabus
41	BIEE4 08	 No-load & Blocked rotor tests on three phase Induction motor. Regulation of a three –phase alternator by synchronous impedance & m.m.f. methods. V and Inverted V curves of a three—phase synchronous motor. Determination of Xd and Xq of a salient pole synchronous machine. Sumpner's test on a pair of three phase transformers. Brake test on three phase Induction Motor. Regulation of three-phase alternator by Z.P.F. and A.S.A methods. Efficiency of a three-phase alternator. Measurement of sequence impedance of a three-phase alternator. Measurement of sequence impedance of a three-phase alternator. 	 Study working and applications of (i) C.R.O. (ii) Digital Storage C.R.O. & (ii) C.R.O. Probes. Study working and applications of Meggar, Tong-tester, P.F. Meter and Phase Shifter. Measure power and power factor in 3- phase load by (i) Two-wattmeter method and (ii) One-wattmeter method. Calibrate an ammeter using DC slide wire potentiometer. Calibrate a voltmeter using Crompton potentiometer. Measure low resistance by Crompton potentiometer. Measure Low resistance by Kelvin's double bridge. Measure earth resistance using fall of potential method. Calibrate a single-phase energy meter by phantom loading at different power factors. Measure self-inductance using Anderson's bridge. Measure capacitance using DE Sauty Bridge. 	Synabus Change Title change Code change

42 BTEE4 09	Technical Seminar	 Power System Design Lab Generating station design: Design considerations and basic schemes of hydro, thermal, nuclear and gas power plants. Electrical equipment for power stations. Auxiliary power supply scheme for thermal power plant. Distribution system Design: Design of feeders & distributors. Calculation of voltage 	Code Change
		 Calculation of conductor size using Kelvin's law. 4. Methods of short term, medium term and long term load forecasting. 5. Sending end and receiving end power circle diagrams. 6. Instrument Transformers: Design considerations of CTs & PTs for measurement and protection. 7. Substations: Types of substations, various bus–bar arrangements. Electricalequipment for substations. 	
43 BTEE4 10	 DBMS Lab Write a program to show two methods of retrieving SQL Write a program show use of cursor type to retrieve multiple record sets Write a SQL statement to read data out of a table Write programs to use "join" and "primary key" Write a program to show a "functional dependency" in database table design Write a program to show difference between group by and order by Write a program to show use of the WHERE clause Write a program to show difference between "join" and "union". Write a program to use the elements of the SELECT query syntax Write a program to use dynamic SQL Write a program to show the difference between delete and truncate commands 	 Electrical Machines Lab Speed control of D.C. shunt motor by (a) Field current control method & plot the curve for speed verses field current. (b) Armature voltage control method & plot the curve for speed verses armature voltage. To perform O.C. and S.C. test on a 1-phase transformer and to determine the parameters of its equivalent circuit its voltage regulation and efficiency. To perform back-to-back test on two identical 1-phase transformers and find their efficiency & parameters of the equivalent circuit. To determine the efficiency and voltage regulation of a single-phase transformer by direct loading. To plot the O.C.C. & S.C.C. of an alternator and to determine its Zs, Xd andregulation by synchronous impedance method. To perform the heat run test on a delta/delta connected 3-phase transformer and determine the parameters for its equivalent circuit. To perform no load and blocked rotor test on a 3 phase induction motor and to determine the parameters of its equivalent circuit. 	Title change Code Change

		global temporary table	10. To synchronize an alternator across the infinite bus (RSEB) and control load sharing.	
44	BTEE4 11	GD & Soft Skill	 Electrical Machine Design Lab Design of transformers: output of transformer, output equation- volt per turn, core area and weight of iron&copper, optimum design-(i) minimum cost and (ii) minimum losses. Design of core and windings. Design a 3-phase transformer. Design of rotating machines: General concepts. specific loading, output equations -dc machines and acmachines, factor affecting size of rotating machines, choice of specific magnetic and electric loadings. Design of 3-phase induction motors: output equation, choice of air gap flux density and ampereconductors' parameter, main dimensions. Design of a 3-phase squirrel cage induction motor. Design of single phase induction motors: output equation, main dimensions, relative size of single phase and 3-phase induction motors. Design of a single phase capacitor start induction motor. Design of synchronous machines: output equation, choice of specific magnetic and electric loadings, main dimensions, short circuit ratio. Design a 3- phase, 2-pole turbo alternator. 	Code Change
45	BTEE 501	Industrial Electronics UNIT 1 CHARACTERISTICS OF POWER DEVICES: Power diodes, power transistor, IGBTS, TRIAC, DIAC, SUS, SBS, and SCS.SCR:- Construction and its characteristics. Methods of turning on and turning off. UNIT 2 CONTROLLED RECTIFIERS: Single and Three phase half wave and full wave controlled rectifiers, three phase bridge rectifier circuits. Double – Y Y type rectifier with interphase transformer. Effect of flywheel diode UNIT 3 CONVERTERS AND INVERTER: One two and four quadrant converter, and buck-boost converter and buck-boost converter Inverters: - Single phase Tapped and Bridge inverter Circuits, 3 phase bridge inverter. Voltage sourced and	 Power Electronics UNIT-1. Power Semiconductor Devices:Construction, Principle of operation, Characteristics and applications of Power Transistor& Thyristor. Characteristics of GTO, DIAC, MCT, TRIAC, Power MOSFET and IGBT; Two- Transistor Model of Thyristor, Thyristor Commutation methods. UNIT-2. SCR: Construction and characteristics, specification and ratings, pulse transformer, optical isolators, methods of turn on, triggering circuits for SCR: R, RC, UJT relaxation oscillator. Rating extension by series and parallel connections, string efficiency. Protection of SCR-Protection against over voltage, over current, dv/dt, di/dt, Gate protection. UNIT-3. Converters-I: Single Phase half & full wave 	Title Change

	CHOPPERSANDCYCLOCONVERTERS:Basicchopper circuits, 2 and 4 quadrantchoppers.Principle of operationof cycloconverter.Single phase tosingle phase, three phase to singlephase and three phase to singlephase and three phase to threephase cycloconverter circuits.UNIT 5MOTORCONTROL:Introduction to speed control ofDC motors using phase controlledconverters and choppers,Basicidea of speed control of threephase induction motors usingvoltage and frequency controlmethods.	1 6	
		UNIT-5. DC-DC Converters: Step Up/Down Copper, Control strategies, Chopper Configurations, Analysis of type A Chopper Voltage, current and load commutated chopper. Multiphase Chopper DC-DC Converters: Step Up/Down Copper, Control strategies, Chopper Configurations, Analysis of type A Chopper Voltage, current and load commutated chopper. Multiphase Chopper	
BTEE 502	 Microprocessors & Interfaces UNIT 1 INTRODUCTION: Overview of Microprocessor Structure and its operation.CPU, address bus, data bus and control bus. Input/ Output devices, buffers,encoders, latches and memories. Demultiplexing of address/data bus and memory/IO read/write control signals UNIT 2 8085 MICROPROCESSOR ARCHITECTURE: Internal data operations and registers, pins and signals, peripheral devices and memory organization, interrupts. CISC and RISC architecture overview. Memory Interfacing, Memory mapped I/O and peripheral mapped I/O and peripheral mapped I/O 8085 Microprocessor Programming model. Intrduction to 8085 instructions,programming techniques, counters and time delays, stack and subroutines, interrupts of 8085. UNIT 3 8085 MICROPROCESSOR INSTRUCTIONS: Classification, format and timing. Instruction set.Programming and debugging, 	Introductionto8085MicroprocessorArchitecture:CPU, address bus, data bus andcontrolbus.Input/Outputdevices,buffers,encoders,latchesandmemories.InternalDataOperationsandRegisters,PinsandSignals,PeripheralDevicesandMemoryOrganization,Interrupts.UNIT 28085MicroprocessorInstructionSet:8BitInstructions, Format and Timing.Instructions, Programming and Debugging,Subroutines.UNIT 38085MicroprocessorInterfacing:8259,8257, 8255, 8253, 8155chips and theirapplications.A/Dconversion, memory, keyboard anddisplay interface (8279).UNIT 48086Microprocessor:Architecture of INTEL 8086 (Bus InterfaceUnit,Executionunit),register	Syllabus Change Title change

		8 bit and 16 bit instructions. UNIT 4 8085 MICROPROCESSOR INTERFACING: 8259, 8257, 8255, 8253, 8155 chips and their applications. A/D conversion, memory, keyboard and display interface (8279). UNIT 5 INTRODUCTION TO 8051 MICROCONTROLLER: General features & architecture of 8051 Memory, timers and interrupts. Pin details. Interfacing and applications.	transfer, processor control. Interrupts: Hardware and software interrupts, responses and types. UNIT 5 Basic Computer Architecture: Central Processing Unit, memory and input/output interfacing. Memory Classification Volatile and non-volatile memory, Primary and secondary memory, Static and Dynamic memory, Logical, Virtual and	
47	BTEE 503	Control System UNIT 1	Control Systems	No change
		CONCEPTS OF OPEN AND CLOSED LOOP SYSTEMS Example and application of oper loop and close loop systems. Brief idea of multivariable control system, Brief idea of Z-transform and digital control systems. Representation of physical systems (Electro-mechanical) by differential equations. Determination of transfer function by block diagram, Reduction technique and signal flow graphs techniques. UNIT 2	 Introduction: Elements of control systems, concept of open loop and closed loop systems, Examples and application of open loop and closed loop systems, brief idea of multivariable control systems. Mathematical Modeling of Physical Systems: Representation of physical system (Electro Mechanical) by differential equations, Determination of transfer function by block diagram reduction techniques and signal flow method, Laplace 	
		TIME RESPONSE ANALYSISOFFIRSTORDER&SECONDORDERSYSTEMSTimeresponseanalysisof firstandsecondordersystems.Transientresponseanalysissteady sissteadystateerroranderrorconstants.UNIT 3FREQUENCYDOMAINMETHODS:Bodeplot,Designspecificationin frequencydomainUNIT 4STABILITYOFTHESYSTEM:Absoluteandrelative	Time Response Analysis of First Order and Second Order System:Characteristic equations, response to step, ramp and parabolic inputs.Transient response analysis, steady state errors and error constants, Transient & steady state analysis of LTI systems UNIT 3ControlSystemComponents: Constructional and working concept of ac servomotor, synchronous and stepper motor Stability and Algebraic Criteria: concept of stability and necessary conditions, Routh-Hurwitz criteriaRouth-Hurwitzcriteria eriteriaImitations.Root LocusLocus Technique: The root locus	
		stability. Routh's stability criterion. Root locus method of analysis. Polar plots Nyquist stability criterion. M and sN locii Nichol's chart.	concepts, construction of root loci. UNIT 4	

	Т	INIT 5	frequency responses, polar and inverse polar	
		JNIT 5 STATE VARIA ANALYSIS: Concept of s state variables and state m State models for linear contin time systems.Diagonaliz transfer functions. Solution state equations. Concept controllability and observabil	BLEplots, Bode plotsstate,Stability in Frequency Domain: Nyquistodel.stability criterion, assessment of relativeuousstability criterion, assessment of relativeationand N Loci, Nichols chart.s ofUNIT 5ofThe design problem and preliminaryityconsiderations lead, lag and lead-lagnetworks,design of closed loop systems usingcompensation techniques in time domain andfrequency domain.Brief idea of proportional, derivative andintegral controllers.	
48 BT 504		Fransmission & Distribution of Ele Power	ctric	Code Change
		J NIT 1 (i) SUPPLY SYSTEM Basic network of power syste	m	
		transmission and distribution voltage, effect of system vol on the size of conductor and losses .comparison of dc 2 w dc 3 wire, 1 –phase ac and 3 phase ac (3-wire and 4-wire) system. (ii) Distribution system:- Primary and secondary distribution system, feeder, distribution system, feeder, distribution and service main .radial and ring main distribut system, Kelvin's law for conductor size . Jnit 2 Parameter of Transmission lines:- Parameter of single an three phase transmission lines with single and double circuit resistance, inductance and capacitance of overhead lines .effect of earth/ lines transpos ,geometric mean radius and distance .inductance and capacitance of lines with symmetrical and unsymmetric spacing inductance and capacitance of double circuit skin and proximity effect .equivalent –circuit and performance of shot and and medium transmission lines . Jnit 3 (i)Generalized ABCD lies constant, equivalent circuit a perform ace of long transmiss communication circuit ,power flow thought a transmission line (ii) corona :- factor affecting	tageData Base Management SystemUNIT 1ire ,Introduction, need, purpose and goals ofDBMS. DBMS Architecture, Concept ofkeys, Generalization and specialization,Introduction to relational data model, ERmodeling, concept of ER diagramUNIT 2Database Design: Conceptual Data Basedesign. Theory of normalization, Primitiveand composite data types, concept ofphysical and logicaldatabases,DataData abstraction and data independence,relational algebra and relational calculus.UNIT 3adSQL, DDL and DML. Constraints assertions,views database security. ApplicationDevelopment using SQL: Host Languageinterface embedded SQL programming.GL's, Forms management and reportwriters. Stored procedures and triggers.Dynamic SQL, JDBC.UNIT 4Internal of RDBMS: Physical dataorganization in sequential, indexed, randomandhashed files. Inverted and multi-liststructuresUNIT 5(i) Transaction Management: Transactionconcept, transaction state, serializability,(ii) Concurrency Control: Lock basedprotocol.(iii) Deadlock Handling: Preventiondetection, recovery. (iv) Recovery System:	

	1 1 00 4 0		
	corona , corona power loss and effect of corona . Unit 4 <u>Insulators and cables</u> , Insulators: - Types, voltage distribution in insulator string and grading , improvement of string efficiency . Underground cable: - Types of cables single core , grading of cables single core , grading of cable thermal rating of cable . Unit 5 Mechanical design of lines and ground Mechanical designs of transmission of lines – sag and tension calculation for different weather condition –Method of grounding –Peterson coil – substation layout		
49 BTEE 505	High Voltage Engineering UNIT I OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS Causes of over voltages and its effect on power system – Lightning, switching surges and temporary over voltages - protection against over voltages. UNIT II ELECTRICAL BREAKDOWN IN GASES, SOLIDS AND LIQUIDS Gaseous breakdown in uniform and non-uniform fields – corona discharges – Vacuum breakdown - conduction and breakdown in pure and commercial liquids – breakdown mechanisms in solid and composite dielectrics UNIT II GENERATION OF HIGH VOLTAGES AND HIGH CURRENTS Generation of High DC, AC, impulse voltages and currents. Tripping and control of impulse generators. UNIT IV MEASUREMENT OF HIGH VOLTAGES AND HIGH CURRENTS Measurement of High voltages and High currents – digital techniques in high voltage measurement UNIT V HIGH VOLTAGE TESTING & INSULATION COORDINATION High voltage testing of electrical	distributor and service mains. Radial and ring- main distribution systems. Kelvin's law for conductor size. UNIT 2 Mechanical Features of Overhead Lines:Conductor material and types of conductor.Conductor arrangements and spacing.Calculation of sag and tension, supports at different levels, effect of wind and ice loading, stringing chart and sag template.Conductor vibrations and vibration dampers. UNIT 3 Parameters of Transmission Lines:Resistance inductance and capacitance of overheadlines, effect of earth, line transposition. Geometric mean radius and distance. Inductance and capacitance of line with symmetrical and unsymmetrical spacing Inductance and capacitance of double circuit lines. Skin and proximity effects.Equivalent circuits and performance of short and medium transmission lines. UNIT 4 Generalized ABCD Line	Code Change

	power apparatus – power frequency, impulse voltage and DC testing – International and Indian standards – Insulation Coordination.	 performance of long transmission line. Ferranti effect. Interference with communication circuits. Power flow through atransmission line Corona:Electric stress between parallel conductors. Disruptive critical voltage and visual critical voltage, Factors affecting corona. Corona power loss. Effects of corona. UNIT 5 Insulators: Pin, shackle, suspension, post and strain insulators. Voltage distribution acrossan insulator string, grading and methods of improving string efficiency. Underground Cables: Conductor, insulator, sheathing and armoring materials. Types of cables. Insulator resistance and capacitance calculation. Electrostatic stresses and reduction of maximum stresses. Causes of breakdown. Thermal rating of cable. Introduction to oil filled and gas filled cables. 	
50 BTEE5 06A	Materials in Electrical SystemsUNIT IConducting Materials: Energy band diagram of conductors, semiconductors and insulators. Conductivity and Resistivity, factors affecting the resistivity, classification of conducting materials, electrical, mechanical and thermal properties and applications of low resistance materials like copper, aluminium, steel, silver, gold, platinum, brass and bronze. Electrical, mechanical and thermal properties and applications of high resistance materials like manganin, constantan, nichrome, mercury, tungsten and carbon. Introduction of super conductors.UNIT IIInsulating Materials. Classification of insulating materials, electrical, physical, thermal, chemical, mechanical properties of insulating materials. Thermoplastic and natural insulating materials, Gaseous and liquid insulating materials, properties and applications of ceramics and synthetic insulating materials.UNIT IIIMagnetic Materials: Introduction and classification of magnetic materials, permeability,	Optimization Techniques UNIT 1 Introduction: Engineering application of Optimization, Formulation of design problems as mathematical programming problems, classification of optimization problems. UNIT 2 Optimization Techniques: Classical optimization, multivariable with not constraints, unconstrained minimization techniques, Penalty function techniques, Lagrange multipliers and feasibility techniques. UNIT 3 Linear Programming: Graphical method, Simplex method, Duality in linear programming (LP), Sensitivity analysis Applications in civil engineering. UNIT 4 Non Linear Programming Techniques/Method: Unconstrained optimization, one dimensional minimization, golden section, elimination, quadratic and cubic, Fibonacci, interpolation Direct search, Descent, Constrained optimization, Direct and indirect, Optimization, Direct and indirect, Optimization, Direct and indirect, Optimization UNIT 5 Constrained Optimization Techniques: Direct, complex, cutting plane, exterior penalty function methods for structural engineering problems.	New Course

		B-H curve, magnetic saturation,		
		hysteresis loop, coercive force		
		and residual magnetism, concept		
		of eddy current and hysteresis		
		loss		
		UNIT IV		
		curie temperature,		
		magnetostriction effect. Soft and		
		hard magnetic materials, ferro and		
		ferri magnetic materials, special		
		purpose magnetic materials.		
		UNIT V:		
		Special Materials and		
		components:		
		Properties and applications of		
		different materials used in		
		electrical systems like –		
		thermocouples, bimetallic, fusing,		
		and soldering. Introduction to		
		different types of materials used		
		in electromagnetic and		
		electromechanical systems,		
		resistors, capacitors, inductors,		
		special semiconductors used in		
		electrical engineering.		
F1	DTEE5	C-14 line Theory and Leady Desires		New Case
51	BTEE5 06B	Switching Theory and Logic Design UNIT- I	Principle of Communication Systems UNIT 1	New Course
	UOD	Number Systems and Codes:-	Noise Effects in Communication Systems:	
		Decimal, Binary, Octal and	Resistor noise, Networks with reactive	
		Hexadecimal Number systems,	elements, Noise temperature,	
		Codes- BCD, Gray Code, Excess-	Noise bandwidth,	
		3 Code, ASCII, EBCDIC,	temperature,	
		3 Code, ASCII, EBCDIC, Conversion between various	temperature, Noise figure. Noise figure & equivalent	
		3 Code, ASCII, EBCDIC, Conversion between various Codes.	temperature, Noise figure & equivalent noise temperature in cascaded circuits.	
		3 Code, ASCII, EBCDIC, Conversion between various Codes. Switching Theory: - Boolean	temperature, Noise figure. Noise figure & equivalent noise temperature in cascaded circuits. UNIT 2	
		3 Code, ASCII, EBCDIC, Conversion between various Codes. Switching Theory: - Boolean Algebra- Postulates and	temperature, Noise figure. Noise figure & equivalent noise temperature in cascaded circuits. UNIT 2 Amplitude Modulation: Frequency	
		3 Code, ASCII, EBCDIC, Conversion between various Codes. Switching Theory: - Boolean Algebra- Postulates and Theorems, De' Morgan's	temperature, Noise figure. Noise figure & equivalent noise temperature in cascaded circuits. UNIT 2 Amplitude Modulation: Frequency translation, Recovery of base band signal,	
		 3 Code, ASCII, EBCDIC, Conversion between various Codes. Switching Theory: - Boolean Algebra- Postulates and Theorems, De' Morgan's Theorem, Switching Functions- 	temperature, Noise figure. Noise figure & equivalent noise temperature in cascaded circuits. UNIT 2 Amplitude Modulation: Frequency translation, Recovery of base band signal, Spectrum & power relations in AM systems.	
		 3 Code, ASCII, EBCDIC, Conversion between various Codes. Switching Theory: - Boolean Algebra- Postulates and Theorems, De' Morgan's Theorem, Switching Functions- Canonical Forms- Simplification 	temperature,Noise figure. Noise figure & equivalentnoise temperature in cascaded circuits.UNIT 2AmplitudeModulation:Frequencytranslation, Recovery of base band signal,Spectrum & power relations in AM systems.Methods of generation & demodulation of	
		 3 Code, ASCII, EBCDIC, Conversion between various Codes. Switching Theory: - Boolean Algebra- Postulates and Theorems, De' Morgan's Theorem, Switching Functions- Canonical Forms- Simplification of Switching Functions- 	temperature,Noise figure. Noise figure & equivalentnoise temperature in cascaded circuits.UNIT 2AmplitudeModulation:Frequencytranslation, Recovery of base band signal,Spectrum & power relations in AM systems.Methods of generation & demodulation ofAM-DSB, AMDSB/SC and AM-SSB	
		 3 Code, ASCII, EBCDIC, Conversion between various Codes. Switching Theory: - Boolean Algebra- Postulates and Theorems, De' Morgan's Theorem, Switching Functions- Canonical Forms- Simplification 	temperature,Noise figure. Noise figure & equivalentnoise temperature in cascaded circuits.UNIT 2AmplitudeModulation:Frequencytranslation, Recovery of base band signal,Spectrum & power relations in AM systems.Methods of generation & demodulation of	
		 3 Code, ASCII, EBCDIC, Conversion between various Codes. Switching Theory: - Boolean Algebra- Postulates and Theorems, De' Morgan's Theorem, Switching Functions- Canonical Forms- Simplification of Switching Functions- Karnaugh Map and Quine Mc- Clusky Methods. Combinational Logic Circuits:- 	temperature,Noise figure. Noise figure & equivalentnoise temperature in cascaded circuits.UNIT 2AmplitudeModulation: Frequencytranslation, Recovery of base band signal,Spectrum & power relations in AM systems.Methods of generation & demodulation ofAM-DSB, AMDSB/SC and AM-SSBsignals.Modulation & detector circuits	
		 3 Code, ASCII, EBCDIC, Conversion between various Codes. Switching Theory: - Boolean Algebra- Postulates and Theorems, De' Morgan's Theorem, Switching Functions- Canonical Forms- Simplification of Switching Functions- Karnaugh Map and Quine Mc- Clusky Methods. 	temperature,Noise figure. Noise figure & equivalentnoise temperature in cascaded circuits.UNIT 2AmplitudeModulation: Frequencytranslation, Recovery of base band signal,Spectrum & power relations in AM systems.Methods of generation & demodulation ofAM-DSB, AMDSB/SC and AM-SSBsignals.Modulation & detector circuitsfor AM systems.AM transmitters &	
		 3 Code, ASCII, EBCDIC, Conversion between various Codes. Switching Theory: - Boolean Algebra- Postulates and Theorems, De' Morgan's Theorem, Switching Functions- Canonical Forms- Simplification of Switching Functions- Karnaugh Map and Quine Mc- Clusky Methods. Combinational Logic Circuits:- 	temperature,Noise figure. Noise figure & equivalentnoise temperature in cascaded circuits.UNIT 2AmplitudeModulation: Frequencytranslation, Recovery of base band signal,Spectrum & power relations in AM systems.Methods of generation & demodulation ofAM-DSB, AMDSB/SC and AM-SSBsignals.Modulation & detector circuitsfor AM systems.AM transmitters &receivers.UNIT 3FrequencyFrequencyModulation:Phase & freq.	
		 3 Code, ASCII, EBCDIC, Conversion between various Codes. Switching Theory: - Boolean Algebra- Postulates and Theorems, De' Morgan's Theorem, Switching Functions- Canonical Forms- Simplification of Switching Functions- Karnaugh Map and Quine Mc- Clusky Methods. Combinational Logic Circuits:- Review of basic gates- Universal gates, Adder, Subtractor ,Serial Adder, Parallel Adder- Carry 	temperature, Noise figure. Noise figure & equivalent noise temperature in cascaded circuits. UNIT 2 Amplitude Modulation: Frequency translation, Recovery of base band signal, Spectrum & power relations in AM systems. Methods of generation & demodulation of AM-DSB, AMDSB/SC and AM-SSB signals. Modulation & detector circuits for AM systems. AM transmitters & receivers. UNIT 3 Frequency Modulation: Phase & freq. modulation & their relationship, Spectrum &	
		 3 Code, ASCII, EBCDIC, Conversion between various Codes. Switching Theory: - Boolean Algebra- Postulates and Theorems, De' Morgan's Theorem, Switching Functions- Canonical Forms- Simplification of Switching Functions- Karnaugh Map and Quine Mc- Clusky Methods. Combinational Logic Circuits:- Review of basic gates- Universal gates, Adder, Subtractor ,Serial Adder, Parallel Adder- Carry Propagate Adder, Carry Look- 	temperature, Noise figure. Noise figure & equivalent noise temperature in cascaded circuits. UNIT 2 Amplitude Modulation: Frequency translation, Recovery of base band signal, Spectrum & power relations in AM systems. Methods of generation & demodulation of AM-DSB, AMDSB/SC and AM-SSB signals. Modulation & detector circuits for AM systems. AM transmitters & receivers. UNIT 3 Frequency Modulation: Phase & freq. modulation & their relationship, Spectrum & bandwidth of a sinusoidally modulated	
		 3 Code, ASCII, EBCDIC, Conversion between various Codes. Switching Theory: - Boolean Algebra- Postulates and Theorems, De' Morgan's Theorem, Switching Functions- Canonical Forms- Simplification of Switching Functions- Karnaugh Map and Quine Mc- Clusky Methods. Combinational Logic Circuits:- Review of basic gates- Universal gates, Adder, Subtractor ,Serial Adder, Parallel Adder- Carry Propagate Adder, Carry Look- ahead Adder, Carry Save Adder, 	temperature, Noise figure. Noise figure & equivalent noise temperature in cascaded circuits. UNIT 2 Amplitude Modulation: Frequency translation, Recovery of base band signal, Spectrum & power relations in AM systems. Methods of generation & demodulation of AM-DSB, AMDSB/SC and AM-SSB signals. Modulation & detector circuits for AM systems. AM transmitters & receivers. UNIT 3 Frequency Modulation: Phase & freq. modulation & their relationship, Spectrum & bandwidth of a sinusoidally modulated FM signal, phasor diagram, Narrow	
		 3 Code, ASCII, EBCDIC, Conversion between various Codes. Switching Theory: - Boolean Algebra- Postulates and Theorems, De' Morgan's Theorem, Switching Functions- Canonical Forms- Simplification of Switching Functions- Karnaugh Map and Quine Mc- Clusky Methods. Combinational Logic Circuits:- Review of basic gates- Universal gates, Adder, Subtractor ,Serial Adder, Parallel Adder- Carry Propagate Adder, Carry Look- ahead Adder, Carry Save Adder, Comparators, Parity Generators, 	temperature, Noise figure. Noise figure & equivalent noise temperature in cascaded circuits. UNIT 2 Amplitude Modulation: Frequency translation, Recovery of base band signal, Spectrum & power relations in AM systems. Methods of generation & demodulation of AM-DSB, AMDSB/SC and AM-SSB signals. Modulation & detector circuits for AM systems. AM transmitters & receivers. UNIT 3 Frequency Modulation: Phase & freq. modulation & their relationship, Spectrum & bandwidth of a sinusoidally modulated FM signal, phasor diagram, Narrow band & wide band FM. Generation &	
		 3 Code, ASCII, EBCDIC, Conversion between various Codes. Switching Theory: - Boolean Algebra- Postulates and Theorems, De' Morgan's Theorem, Switching Functions- Canonical Forms- Simplification of Switching Functions- Karnaugh Map and Quine Mc- Clusky Methods. Combinational Logic Circuits:- Review of basic gates- Universal gates, Adder, Subtractor ,Serial Adder, Parallel Adder- Carry Propagate Adder, Carry Look- ahead Adder, Carry Save Adder, Comparators, Parity Generators, Decoder and Encoder, 	temperature, Noise figure. Noise figure & equivalent noise temperature in cascaded circuits. UNIT 2 Amplitude Modulation: Frequency translation, Recovery of base band signal, Spectrum & power relations in AM systems. Methods of generation & demodulation of AM-DSB, AMDSB/SC and AM-SSB signals. Modulation & detector circuits for AM systems. AM transmitters & receivers. UNIT 3 Frequency Modulation: Phase & freq. modulation & their relationship, Spectrum & bandwidth of a sinusoidally modulated FM signal, phasor diagram, Narrow band & wide band FM. Generation & demodulation of FM signals.	
		 3 Code, ASCII, EBCDIC, Conversion between various Codes. Switching Theory: - Boolean Algebra- Postulates and Theorems, De' Morgan's Theorem, Switching Functions- Canonical Forms- Simplification of Switching Functions- Karnaugh Map and Quine Mc- Clusky Methods. Combinational Logic Circuits:- Review of basic gates- Universal gates, Adder, Subtractor ,Serial Adder, Parallel Adder- Carry Propagate Adder, Carry Look- ahead Adder, Carry Save Adder, Comparators, Parity Generators, Decoder and Encoder, Multiplexer and De-multiplexer, 	temperature, Noise figure. Noise figure & equivalent noise temperature in cascaded circuits. UNIT 2 Amplitude Modulation: Frequency translation, Recovery of base band signal, Spectrum & power relations in AM systems. Methods of generation & demodulation of AM-DSB, AMDSB/SC and AM-SSB signals. Modulation & detector circuits for AM systems. AM transmitters & receivers. UNIT 3 Frequency Modulation: Phase & freq. modulation & their relationship, Spectrum & bandwidth of a sinusoidally modulated FM signal, phasor diagram, Narrow band & wide band FM. Generation & demodulation of FM signals. FM transmitters & receivers, Comparison of	
		 3 Code, ASCII, EBCDIC, Conversion between various Codes. Switching Theory: - Boolean Algebra- Postulates and Theorems, De' Morgan's Theorem, Switching Functions- Canonical Forms- Simplification of Switching Functions- Karnaugh Map and Quine Mc- Clusky Methods. Combinational Logic Circuits:- Review of basic gates- Universal gates, Adder, Subtractor ,Serial Adder, Parallel Adder- Carry Propagate Adder, Carry Look- ahead Adder, Carry Save Adder, Comparators, Parity Generators, Decoder and Encoder, Multiplexer and De-multiplexer, ALU, PLA and PAL. 	temperature, Noise figure. Noise figure & equivalent noise temperature in cascaded circuits. UNIT 2 Amplitude Modulation: Frequency translation, Recovery of base band signal, Spectrum & power relations in AM systems. Methods of generation & demodulation of AM-DSB, AMDSB/SC and AM-SSB signals. Modulation & detector circuits for AM systems. AM transmitters & receivers. UNIT 3 Frequency Modulation: Phase & freq. modulation & their relationship, Spectrum & bandwidth of a sinusoidally modulated FM signal, phasor diagram, Narrow band & wide band FM. Generation & demodulation of FM signals. FM transmitters & receivers, Comparison of AM, FM & PM. Pre emphasis & de-	
		 3 Code, ASCII, EBCDIC, Conversion between various Codes. Switching Theory: - Boolean Algebra- Postulates and Theorems, De' Morgan's Theorem, Switching Functions- Canonical Forms- Simplification of Switching Functions- Karnaugh Map and Quine Mc- Clusky Methods. Combinational Logic Circuits:- Review of basic gates- Universal gates, Adder, Subtractor ,Serial Adder, Parallel Adder- Carry Propagate Adder, Carry Look- ahead Adder, Carry Save Adder, Comparators, Parity Generators, Decoder and Encoder, Multiplexer and De-multiplexer, ALU, PLA and PAL. UNIT- II 	temperature, Noise figure. Noise figure & equivalent noise temperature in cascaded circuits. UNIT 2 Amplitude Modulation: Frequency translation, Recovery of base band signal, Spectrum & power relations in AM systems. Methods of generation & demodulation of AM-DSB, AMDSB/SC and AM-SSB signals. Modulation & detector circuits for AM systems. AM transmitters & receivers. UNIT 3 Frequency Modulation: Phase & freq. modulation & their relationship, Spectrum & bandwidth of a sinusoidally modulated FM signal, phasor diagram, Narrow band & wide band FM. Generation & demodulation of FM signals. FM transmitters & receivers, Comparison of AM, FM & PM. Pre emphasis & de- emphasis. Threshold in FM, PLL	
		 3 Code, ASCII, EBCDIC, Conversion between various Codes. Switching Theory: - Boolean Algebra- Postulates and Theorems, De' Morgan's Theorem, Switching Functions- Canonical Forms- Simplification of Switching Functions- Karnaugh Map and Quine Mc- Clusky Methods. Combinational Logic Circuits:- Review of basic gates- Universal gates, Adder, Subtractor ,Serial Adder, Parallel Adder- Carry Propagate Adder, Carry Look- ahead Adder, Carry Save Adder, Comparators, Parity Generators, Decoder and Encoder, Multiplexer and De-multiplexer, ALU, PLA and PAL. UNIT- II Integrated circuits: - TTL and 	temperature, Noise figure. Noise figure & equivalent noise temperature in cascaded circuits. UNIT 2 Amplitude Modulation: Frequency translation, Recovery of base band signal, Spectrum & power relations in AM systems. Methods of generation & demodulation of AM-DSB, AMDSB/SC and AM-SSB signals. Modulation & detector circuits for AM systems. AM transmitters & receivers. UNIT 3 Frequency Modulation: Phase & freq. modulation & their relationship, Spectrum & bandwidth of a sinusoidally modulated FM signal, phasor diagram, Narrow band & wide band FM. Generation & demodulation of FM signals. FM transmitters & receivers, Comparison of AM, FM & PM. Pre emphasis & de- emphasis. Threshold in FM, PLL demodulator.	
		 3 Code, ASCII, EBCDIC, Conversion between various Codes. Switching Theory: - Boolean Algebra- Postulates and Theorems, De' Morgan's Theorem, Switching Functions- Canonical Forms- Simplification of Switching Functions- Karnaugh Map and Quine Mc- Clusky Methods. Combinational Logic Circuits:- Review of basic gates- Universal gates, Adder, Subtractor ,Serial Adder, Parallel Adder- Carry Propagate Adder, Carry Look- ahead Adder, Carry Save Adder, Comparators, Parity Generators, Decoder and Encoder, Multiplexer and De-multiplexer, ALU, PLA and PAL. UNIT- II Integrated circuits: - TTL and CMOS logic families and their 	temperature, Noise figure. Noise figure & equivalent noise temperature in cascaded circuits. UNIT 2 Amplitude Modulation: Frequency translation, Recovery of base band signal, Spectrum & power relations in AM systems. Methods of generation & demodulation of AM-DSB, AMDSB/SC and AM-SSB signals. Modulation & detector circuits for AM systems. AM transmitters & receivers. UNIT 3 Frequency Modulation: Phase & freq. modulation & their relationship, Spectrum & bandwidth of a sinusoidally modulated FM signal, phasor diagram, Narrow band & wide band FM. Generation & demodulation of FM signals. FM transmitters & receivers, Comparison of AM, FM & PM. Pre emphasis & de- emphasis. Threshold in FM, PLL demodulator. UNIT 4	
		 3 Code, ASCII, EBCDIC, Conversion between various Codes. Switching Theory: - Boolean Algebra- Postulates and Theorems, De' Morgan's Theorem, Switching Functions- Canonical Forms- Simplification of Switching Functions- Karnaugh Map and Quine Mc- Clusky Methods. Combinational Logic Circuits:- Review of basic gates- Universal gates, Adder, Subtractor ,Serial Adder, Parallel Adder- Carry Propagate Adder, Carry Look- ahead Adder, Carry Save Adder, Comparators, Parity Generators, Decoder and Encoder, Multiplexer and De-multiplexer, ALU, PLA and PAL. UNIT- II Integrated circuits: - TTL and CMOS logic families and their characteristics. Brief introduction 	temperature, Noise figure. Noise figure & equivalent noise temperature in cascaded circuits. UNIT 2 Amplitude Modulation: Frequency translation, Recovery of base band signal, Spectrum & power relations in AM systems. Methods of generation & demodulation of AM-DSB, AMDSB/SC and AM-SSB signals. Modulation & detector circuits for AM systems. AM transmitters & receivers. UNIT 3 Frequency Modulation: Phase & freq. modulation & their relationship, Spectrum & bandwidth of a sinusoidally modulated FM signal, phasor diagram, Narrow band & wide band FM. Generation & demodulation of FM signals. FM transmitters & receivers, Comparison of AM, FM & PM. Pre emphasis & de- emphasis. Threshold in FM, PLL demodulator. UNIT 4 Noise in AM and FM: Calculation of	
		 3 Code, ASCII, EBCDIC, Conversion between various Codes. Switching Theory: - Boolean Algebra- Postulates and Theorems, De' Morgan's Theorem, Switching Functions- Canonical Forms- Simplification of Switching Functions- Karnaugh Map and Quine Mc- Clusky Methods. Combinational Logic Circuits:- Review of basic gates- Universal gates, Adder, Subtractor ,Serial Adder, Parallel Adder- Carry Propagate Adder, Carry Look- ahead Adder, Carry Save Adder, Comparators, Parity Generators, Decoder and Encoder, Multiplexer and De-multiplexer, ALU, PLA and PAL. UNIT- II Integrated circuits: - TTL and CMOS logic families and their characteristics. Brief introduction to RAM and ROM. 	temperature, Noise figure. Noise figure & equivalent noise temperature in cascaded circuits. UNIT 2 Amplitude Modulation: Frequency translation, Recovery of base band signal, Spectrum & power relations in AM systems. Methods of generation & demodulation of AM-DSB, AMDSB/SC and AM-SSB signals. Modulation & detector circuits for AM systems. AM transmitters & receivers. UNIT 3 Frequency Modulation: Phase & freq. modulation & their relationship, Spectrum & bandwidth of a sinusoidally modulated FM signal, phasor diagram, Narrow band & wide band FM. Generation & demodulation of FM signals. FM transmitters & receivers, Comparison of AM, FM & PM. Pre emphasis & de- emphasis. Threshold in FM, PLL demodulator. UNIT 4 Noise in AM and FM: Calculation of signal-to-noise	
		 3 Code, ASCII, EBCDIC, Conversion between various Codes. Switching Theory: - Boolean Algebra- Postulates and Theorems, De' Morgan's Theorem, Switching Functions- Canonical Forms- Simplification of Switching Functions- Karnaugh Map and Quine Mc- Clusky Methods. Combinational Logic Circuits:- Review of basic gates- Universal gates, Adder, Subtractor ,Serial Adder, Parallel Adder- Carry Propagate Adder, Carry Look- ahead Adder, Carry Save Adder, Comparators, Parity Generators, Decoder and Encoder, Multiplexer and De-multiplexer, ALU, PLA and PAL. UNIT- II Integrated circuits: - TTL and CMOS logic families and their characteristics. Brief introduction to RAM and ROM. Sequential Logic Circuits: - 	temperature, Noise figure. Noise figure & equivalent noise temperature in cascaded circuits. UNIT 2 Amplitude Modulation: Frequency translation, Recovery of base band signal, Spectrum & power relations in AM systems. Methods of generation & demodulation of AM-DSB, AMDSB/SC and AM-SSB signals. Modulation & detector circuits for AM systems. AM transmitters & receivers. UNIT 3 Frequency Modulation: Phase & freq. modulation & their relationship, Spectrum & bandwidth of a sinusoidally modulated FM signal, phasor diagram, Narrow band & wide band FM. Generation & demodulation of FM signals. FM transmitters & receivers, Comparison of AM, FM & PM. Pre emphasis & de- emphasis. Threshold in FM, PLL demodulator. UNIT 4 Noise in AM and FM: Calculation of signal-to-noise SC, DSB with carrier, Noise	
		 3 Code, ASCII, EBCDIC, Conversion between various Codes. Switching Theory: - Boolean Algebra- Postulates and Theorems, De' Morgan's Theorem, Switching Functions- Canonical Forms- Simplification of Switching Functions- Karnaugh Map and Quine Mc- Clusky Methods. Combinational Logic Circuits:- Review of basic gates- Universal gates, Adder, Subtractor ,Serial Adder, Parallel Adder- Carry Propagate Adder, Carry Look- ahead Adder, Carry Save Adder, Comparators, Parity Generators, Decoder and Encoder, Multiplexer and De-multiplexer, ALU, PLA and PAL. UNIT- II Integrated circuits: - TTL and CMOS logic families and their characteristics. Brief introduction to RAM and ROM. Sequential Logic Circuits: - Latches and Flip Flops- SR, D, 	temperature, Noise figure. Noise figure & equivalent noise temperature in cascaded circuits. UNIT 2 Amplitude Modulation: Frequency translation, Recovery of base band signal, Spectrum & power relations in AM systems. Methods of generation & demodulation of AM-DSB, AMDSB/SC and AM-SSB signals. Modulation & detector circuits for AM systems. AM transmitters & receivers. UNIT 3 Frequency Modulation: Phase & freq. modulation & their relationship, Spectrum & bandwidth of a sinusoidally modulated FM signal, phasor diagram, Narrow band & wide band FM. Generation & demodulation of FM signals. FM transmitters & receivers, Comparison of AM, FM & PM. Pre emphasis & de- emphasis. Threshold in FM, PLL demodulator. UNIT 4 Noise in AM and FM: Calculation of signal-to-noise SC, DSB with carrier, Noise calculation of square law demodulator &	
		 3 Code, ASCII, EBCDIC, Conversion between various Codes. Switching Theory: - Boolean Algebra- Postulates and Theorems, De' Morgan's Theorem, Switching Functions- Canonical Forms- Simplification of Switching Functions- Karnaugh Map and Quine Mc- Clusky Methods. Combinational Logic Circuits:- Review of basic gates- Universal gates, Adder, Subtractor ,Serial Adder, Parallel Adder- Carry Propagate Adder, Carry Look- ahead Adder, Carry Save Adder, Comparators, Parity Generators, Decoder and Encoder, Multiplexer and De-multiplexer, ALU, PLA and PAL. UNIT- II Integrated circuits: - TTL and CMOS logic families and their characteristics. Brief introduction to RAM and ROM. Sequential Logic Circuits: - 	temperature, Noise figure. Noise figure & equivalent noise temperature in cascaded circuits. UNIT 2 Amplitude Modulation: Frequency translation, Recovery of base band signal, Spectrum & power relations in AM systems. Methods of generation & demodulation of AM-DSB, AMDSB/SC and AM-SSB signals. Modulation & detector circuits for AM systems. AM transmitters & receivers. UNIT 3 Frequency Modulation: Phase & freq. modulation & their relationship, Spectrum & bandwidth of a sinusoidally modulated FM signal, phasor diagram, Narrow band & wide band FM. Generation & demodulation of FM signals. FM transmitters & receivers, Comparison of AM, FM & PM. Pre emphasis & de- emphasis. Threshold in FM, PLL demodulator. UNIT 4 Noise in AM and FM: Calculation of signal-to-noise SC, DSB with carrier, Noise	

		Counters and Shift Registers:- Design of Synchronous and Asynchronous Counters:- Binary, BCD,Decade and Up/Down Counters , Shift Registers, Types of Shift Registers, Counters using Shift Registers- Ring Counter and Johnson Counter. UNIT- III Synchronous Sequential Circuits:- State Tables State	Calculation of S/N ratio in FM demodulators, Super-heterodyne receivers. UNIT 5 Pulse Modulation Systems: Sampling theorem, Generation and demodulation methods of PAM, PWM, PPM.	
		EquationsDateFactor FactorEquationsandStateEquationsAssignment,Design ofClockedSequentialCircuitsusingStateEquations.Finite statemachine-capabilitiesand limitations,Mealy and Mooremodels-minimizationofcompletelyspecifiedandincompletelyspecifiedsequentialmachines,Partitiontechniquesandandmergerchartmethodsconcept		
		of minimal cover table.		
		UNIT- IV		
		Algorithmic State Machine: Representation of sequential circuits using ASM charts synthesis of output and next state functions, Data path control path partition-based design.		
		UNIT- V		
		Fault Detection and Location: Fault models for combinational and sequential circuits, Fault detection in combinational circuits; Homing experiments, distinguishing experiments, machine identification and fault detection experiments in sequential circuits.		
52	BTEE5	Digital Signal Processing	Introduction to VLSI	New Course
	06C	UNIT 1 TRANSFORM ANALYSIS OF LTI SYSTEMS: Linear Time Invariant Systems(both discrete & continuous), Properties of LTI systems, Response of continuous time LTI system using	UNIT 1 Introduction to MOS Technology: Basic MOS transistors, Enhancement Mode transistoraction, Depletion Mode transistor action, NMOS and CMOS fabrication.	
		convolution integral, Response of		
		discrete time LTI system using convolution sum, The frequency	Basic Electrical Properties of MOS Circuits: Versus V relationship, Aspects	
		response of LTI systems, System	of	
		functions for systems	t <mark>hreshold voltage, Transistor Trans</mark>	
		characterized by Linear Constant Coefficient Difference equations,	conductance gm. The NMOS inverter, Pull up to Pull-down	
		All-pass system, Minimum-Phase	ratio for a NMOS Inverter and CMOS	
		systems, Linear systems with	UNIT 3	
		linear phase. UNIT 2	CMOS Logic Circuits:The inverter, Combinational Logic, NAND Gate NOR	
		TYPES OF TRANSFORM: The		

		Discrete Fourier transforms	Compound Gates, 2 input CMOS	
		(DFT), Properties of the DFT, and	Multiplexer, Memory latches and registers	
		Linear Convolution using DFT.	Transmission Gate, Gate delays, CMOS-	
		Efficient computation of the DFT:	Gate Transistor sizing, Power dissipation	
		Decimation-in-Time and Decimation-in frequency FFT	UNIT 4 Basic Physical Design of Simple Gates	
		Algorithms. Discrete cosine	and Layout Issues: Layout issues for	
		transform, Processing of speech	inverter, Layout for NAND and NOR Gates,	
		signals: Vocoders, linear	Complex Logic gates Layout, Layout	
		predictive coders.	optimization for performance.	
		UNIT 3	UNIT 5	
		FILTER DESIGN	Introduction to VHDL, Verilog & other	
		TECHNIQUES: Introduction,	design tools. VHDL Code for simple Logic	
		Filter Design: Magnitude and	gates, flip-flops, shift-registers, Counters,	
		phase response of digital filters-	Multiplexers, adders and subtractors.	
		Linear phase response, IIR filter		
		design by impulse invariance &		
		bilinear transformation. Design of		
		FIR filters by Windowing:		
		Rectangular, Hanning, Hamming & Kaiser. Butterworth &		
		Chebyshev filters.		
		UNIT 4		
		STRUCTURES FOR		
		DISCRETE-TIME SYSTEMS:		
		Block diagram and signal flow		
		graph representation of Linear		
		Constant Coefficient Difference		
		equations, Basic structures for IIR		
		and FIR systems, Transposed		
		forms. Circular and sectioned convolutions, Matrix		
		convolutions, Matrix representation of digital networks.		
		Digital Filter Structure: Basic IIR		
		and FIR digital filter structure,		
		analysis of finite word length		
		effects, effect of coefficient		
		quantization, round-off errors,		
		and limit cycle in IIR digital		
		filters.		
		UNIT 5		
		MULTI RATE DIGITAL		
		SIGNAL PROCESSING:		
		Design of practical sampling rate converters, decimator and		
		interpolators, poly-phase		
		decomposition, digital processing		
		of analog signals.		
53	BTEE5	Communication Systems		Title Change
	06D	UNIT-I		Code Change
		Introduction: Overview of		
		Communication system,		
		Communication channels, Mathematical Models for		
		Communication Channels		
		Introduction of random		
		Variables: Definition of random		
		variables, PDF, CDF and its		
		properties, joint PDF,CDF,		
		Marginalized PDF, CDF, WSS		
		wide stationery, strict sense		

	06E	UNIT 1	Removed
54	BTEE5	Electromagnetic Field Theory	Subject
		satellite Communication.	
		radio telephones. Introduction to	
		Systems: Introduction to cellular	
		Advanced Communication	
		UNIT - V	
		applications.	
		Military, Civil and Industrial	
		light detectors. Applications:	
		fibers. Introduction to Lasers and	
		configurations. Losses in optical	
		and acceptance cone, Fiber	
		optical fibers. Acceptance angle	
		cables, Light propagation through	
		Optical fibers versus metallic	
		Optical Communication System.	
		Fiber Optical System: Basic	
		UNIT - IV	
		Huffman Coding.	
		Theorem:Shannon Fano Coding,	
		Channel Capacity. Source Coding	
		Theory: Entropy, Information,	
		Formats-Line coding. Information and Coding	
		Comparison. Digital Signaling Formats-Line coding.	
		FSK. Spectral Analysis.	
		Modulation schemes: ASK, PSK,	
		6	
		•	
		Digital Modulation and Transmission: Advantages of	
		UNIT - III Digital Madulation and	
		Modulation (DM), ADPCM.	
		Modulation (DPCM), Delta	
		Differential Pulse Code	
		Code Modulation (PCM),	
		Pulse Digital Modulation: Pulse	
		and Recovery.	
		Modulation(PPM), Generation	
		(PWM), Pulse Position	
		PAM), Pulse Width Modulation	
		Amplitude Modulation (TDM-	
		reconstruction, TDM-Pulse	
		Sampling-Natural and Flat top.	
		Pulse Analog Modulation:	
		(NBFM, WBFM)	
		Methods. Bandwidth of FM	
		FM wave- Direct and Indirect	
		FM and PM Wave. Generation of	
		Modulation, Relation between	
		Demodulators. Angle	
		SSB, And VSB. Modulators and	
		Modulation theory: DSB-SC,	
		Modulation, Amplitude	
		Modulation- Need for	
		Analog Modulation:	
		UNIT - II	
		Poisson process, Wiener process.	
		distribution, White process,	
		UDF, GDF,RDF, Binomial	
		stationery, non stationery signals,	

				,
1		Introduction: Vector Relation in		
		rectangular, cylindrical and		
		spherical coordinate system.		
		Concept and physical		
		interpretation of gradient,		
		Divergence and curl. Green's and		
		stock's theorems.		
		UNIT 2		
		Electrostatics: Electric field due		
		to various charge		
		configurations.The potential		
		functions and displacement		
		vector. Gauss's law.Poisson's and		
		Laplace's equation and their		
		solution. Uniqueness theorem.		
		Continuity equation. Capacitance		
		and electrostatics		
		energy.Boundary conditions.		
		UNIT 3		
		Magnetostatics: Magnetic field		
		intensity, flux density &		
		magnetization, Faraday's law. Bio		
		Savart's Law. Ampere's		
		law.Magnetic scalar and vector		
		potentials. Energy Stored in		
		magnetic field. Boundary		
		e		
		electric and magnetic field.		
		UNIT 4		
		Time Varying Fields:		
		Displacement currents and		
		equation of continuity, Maxwell's		
		equations, Uniform plane wave in		
		free space, dielectrics and		
		conductors, skin effect sinusoidal		
		time variations, reflection of		
		Uniform Plane Wave (UPW),		
		standing wave ratio. Potentials		
		vector and power onsiderations.		
		UNIT 5		
		Radiation, Emi And Emc:		
		Radiation: Retarded potentials		
		and concept of radiation.		
		Alternating current element and		
		power radiated. Radiation		
		resistance: Introduction to		
		Electromagnetic Interference and		
		Electromagnetic compatibility,		
		EMI coupling modes, methods of		
		eliminating interference;		
		shielding, grounding, conducted		
		EMI, EMI Testing: emission		
		testing, susceptibility testing.		
55	BTEE5	Industrial Electronics Lab	POWER ELECTRONICS LAB	Syllabus change
	07	1 Study the characteristics of SCR.	1 Study the comparison of following	Title change
		• Observe the terminal	power electronics devices regarding	Code change
		configuration.	ratings, performance characteristics	
		• Measure the breakdown	and applications: Power Diode,	
		voltage.	Power Transistor, Thyristor, Diac,	
		• Measure the latching &	Triac, GTO, MOSFET, MCT and	
		holding current.	SIT.	
L	1	0		1

		TT T - 1		[]
		 V-I characteristics. Perform experiment on triggering circuit R-C triggering circuit UJT triggering circuit. Study & obtain the waveforms of single phase half wave controlled converter. Study & obtain the waveforms of single phase half controlled symmetrical and asymmetrical bridge converters. Study & obtain the waveforms of single phase fully controlled bridge converter. Study & obtain the waveforms for voltage- commutated- chopper. Study & obtain the waveforms for current- commutated- chopper. Perform experiment on single phase PWM inverter. Perform experiment on Motor control - open loop & closed loop. Study & obtain the characteristics of DIAC. 	 2 Determine V-I characteristics of SCR and measure forward breakdown voltage, latching and holding currents. 3 Find V-I characteristics of TRIAC and DIAC. 4 Find output characteristics of MOSFET and IGBT. 5 Find transfer characteristics of MOSFET and IGBT. 6 Find UJT static emitter characteristics and study the variation in peak point and valley point. 7 Study and test firing circuits for SCR- R, RC and UJT firing circuits. 8 Study and test 3-phase diode bridge rectifier with R and RL loads. Study the effect of filters. 9 Study and obtain waveforms of single-phase half wave controlled rectifier with and without filters. Study the variation of output voltage with respect to firing angle. 10 Study and obtain waveforms of single-phase half controlled bridge rectifier with R and RL loads. Study and show the effect of freewheeling diode. 11 Study and obtain waveforms of single-phase full controlled bridge converter with R and RL loads. Study and show rectification and inversion operations with and without freewheeling diode. 12 Control the speed of a dc motor using single-phase half controlled bridge rectifier. Plot armature voltage versus speed characteristics. 	
=(DTEE.	M'		Na Chas
56	BTEE5 08	 Microprocessor Lab Study the hardware, functions, memory structure and operation of 8085-Microprocessor kit. Program to perform integer division: (1) 8-bit by 8-bit (2) 16 bit by 8 bit. 	 MICROPROCESSOR LAB 1 Study the hardware, functions, memory structure and operation of 8085- Microprocessor kit. 2 Program to perform integer division: (1) 8-bit by 8-bit (2) 16-bit by 8-bit. 3 Transfer of a block of data in memory to another place in memory 4 Transfer of black 	No Change
		3. Program to add two 8-bit	to another location in reverse order.	

<u>г г</u>	1	
	 numbers 4. Program to Find 2's compliment of a number. 5. Transfer of a block of data in memory to another place in memory 6. Transfer of black to another location in reverse order. 7. Searching a number in an array. 8. Sorting of array in: (1) Ascending order (2) Descending order. 9. Finding party of a 32-bit number. 10. Program to multiply two 8-bit numbers 11. Program to generate and sum 15 Fibonacci numbers. 12. Reversing bits of an 8-bit number. 	 5 Searching a number in an array. 6 Sorting of array in: (1) Ascending order (2) Descending order. 7 Finding party of a 32-bit number. 8 Program to perform following conversion (1) BCD to ASCII (2) BCD to hexadecimal. 9 Program to multiply two 8-bit numbers 10 Program to generate and sum 15 Fibonacci numbers. 11 Program for rolling display of message "India", "HELLO". 12 To insert a number at correct place in a sorted array. 13 Reversing bits of an 8-bit number. 14 Fabrication of 8-bit LED interfaces for 8085 kit through 8155 and 8255.
57 BTEE5 09	MATLAB Programming Lab 1. Introduction to Matlab	 15 Data transfer on output port 8155 & 8255 & implementation of disco light, running light, and sequential lights on the above mentioned hardware. 16 Parallel data transfer between two DYNA-85 kit using 8253 ports. 17 Generation of different waveform on 8253/8254 programmable timer. SYSTEM PROGRAMMING LAB Basics of MATLAB matrices and
	 Introduction to Matlab Basic operation in Matlab using Matrix and array input type Find mesh current in given ckt using Mat lab 	Basics of MATLAB matrices and vectors, matrix and array operations, Saving and loading data, plotting simple graphs, scripts and functions, Script files, Function files, Global Variables, Loops, Branches, Control flow, Advanced data objects, Multi- dimensional matrices, Structures, Applications in linear algebra curve fitting and interpolation. Numerical integration, Ordinary differential equation. (All contents is to be covered with tutorial sheets) Simulink: Idea about simulink, problems based on simulink. (All contents is to be covered with tutorial sheets)Write a program to generate Machine Op- code table using two pass Assembler.

58	BTEE5 10	 2 mA I I I I I I I I I I I I I I I I I I	DBMS LAB 1 Designing database and constraints using DDL statements. 2 Experiments for practicing SQL query execution on designed database. 3 Database connectivity using JDBC/ODBC. 4 Features of embedded SQL. 5 Designing front end in HLL and accessing data from backend database. 6 Designing simple projects using front end-back end programming. 7 Project for generating Electricity Bills 8 Project for managing student's attendance/marks details.	Code Change
59	BTEE 511	Digital Signal Processing Modelling and simulation using MAT LAB 1. Realising a given block diagram having multiplier, adder/ subtractor and system (Discrete/Continuous) with given Impulse response. Calculating output for given input.	 PROFESSIONAL ETHICS AND DISASTERS MANAGEMENT Objectives: to help the students To appreciate the importance and values and ethics in implementing the technology and ensure sustainable development, happiness and prosperity. 	New Course
		 To simulate the transmitter and receiver for BPSK To design and simulate FIR digital filter (LP/HP). 	• To understand the co-existence with nature and to be aware of potential natural and manmade disasters.	

4. To design and simulate IIR digital filter (LP/HP).

5. To design and simulate DFT/FFT .

DSP Lab using TMS320C6XXX DSP Kits

6. To study the architecture of TMS320C6XXX DSP kits using Bloom with DSP.

7. To generate wave form (SINE, COSINE, SQUARE & TRIANGULAR).

8. Verification of Sampling Theorem.

9. Verification of linear/circular convolution.

10. To design FIR and FIR digital filter (LP/HP).

2 Human Values: Effect of Technological Growth and Sustainable Development.

Profession and Human Values: Values crisis in contemporary society. Nature of values. Psychological Values, Societal Values and Aesthetic Values. Moral and Ethical values.

Professional Ethics:

• Professional and Professionalism-Professional Accountability, Role of a professional, Ethic and image of profession.

• Engineering Profession and Ethics-Technology and society, Ethical obligations of Engineering professionals, Roles of Engineers in industry, society, nation and the world.

• Professional Responsibilities-Collegiality, Loyalty, Confidentially, Conflict of Interest, Whistle

Blowing.

4 Disaster Management: Understanding Disasters and Hazards and related issues social and environmental. Risk and Vulnerability. Types of Disasters, their occurrence/ causes, impact and preventive measures:

Natural Disasters- Hydro-meteorological Based Disasters like Flood, Flash Flood, Cloud Burst, Drought, Cyclone, Forest Fires; Geological Based Disasters like Earthquake, Tsunami, Landslides, Volcanic Eruptions.

5 Manmade Disasters: Chemical Industrial Hazards, Major Power Break Downs, Traffic Accidents, Fire Hazards, Nuclear Accidents. Disaster profile of Indian continent. Case studies. Disaster Management Cycle and its components.

In order to fulfill objectives of course,

(A) The institute shall be required to organize at least 3 expert lectures by eminent social workers/professional leaders.

(B) Each student shall compulsorily be required to:

I. Visit a social institution/NGO for at least 7 days during the semester and submit a Summary report.

II. Perform a case study of a disaster that has

			occurred in last decade and submit a Summary report.	
60	BTEE	Training viva	Summary report.	New Course
	512	C C		
61	BTEE6	Advanced Power System	Discipline & Extra Curricular Activity	Code change
61	BTEE6 01	 Advanced Power System UNIT 1 Wave terminology, Development of wave quotations, Terminal problems, Lattice diagrams, Origin and Nature of power system transients and surges, Surge parameters of plants, Equivalent Circuit representations. Lumped and distributed circuit transients. UNIT 2 Line energisation and de- energisation transients-Earth and earthwire effects. Current chopping in circuit breakers. Short line fault condition and its relation to circuit breaker duty. Trapped harge effects. Effect of source and source representation in short line fault studies. UNIT 3 Control of transients, Lightening phenomenon, influence of tower footing resistance and earth resistance, Traveling waves in distributed parameters multiconductor lines, parameters as a function of frequency. 	Modern Control Theory UNIT 1 Introduction: Concept of Linear vector space Linear Independence, Bases & Representation, domain and range. Concept of Linearity, relaxedness, time invariance, causality. State Space Approach of Control System Analysis:Modern Vs conventional control theory, concept of state, state variable state vector, state space, state space equations, Writing statespace equations of mechanical, Electrical systems, Analogous systems. UNIT 2 State Space Representation using physical and phase variables, comparison form of system representation. Block diagram representation. State space representation using canonical variables. Diagonal matrix. Jordan canonical form, Derivation of transfer functions from state-model.	Code change
		 UNIT 4 Mechanism of Lightning Discharge Types of Lightning strokes, Harmful effects of lighting, protections against lightning, overhead Ground wires. UNIT 5 Lightening Arresters, Types of lightening arresters, Surge Absorber simulation of surge diverters in trarient analysis. Fourier integral and z transform methods in power system trarient. 	UNIT 3 Solution of State Equations:Eigenvalues and Eigen vectors. Matrix.Exponential, State transition matrix, Properties of state transition matrix. Computation of State transition matrix concepts of controllability &observability, Pole placement by state feedback. UNIT 4 Digital Control Systems: Introduction, sampled data control systems, signal reconstruction, difference equations. The z-transform, Z-Transfer Function. Block diagram analysis of sampled data systems, z and s domain relationship. UNIT 5 Modeling of sample-hold circuit, steady state accuracy, stability in z-plane and Jury stability criterion, bilinear transformation Routh-Hurwitz criterion on s-planes,digital PID controllers, Introductionto adaptive control.	

62	BTEE6 02	Switchge UNIT 1	ar & protection	High Voltage Engineering UNIT 1	Code change
62		UNIT 1 UNIT 1 F C F V F F C S S V F F C S S V F F C S S V F F C S S S S S S S S S S S S S	Circuit Breakers Circuit Breakers: Elementary principles of arc interruption, Recovery, Restriking Voltage and Recovery voltages Restriking Phenomenon, Average and Max. RRRV, Numerical Problems - Current Chopping and Resistance Switching - CB ratings and Specifications : Types and Numerical Problems. – Auto reclosures. Description and Operation of following types of circuit preakers, Air Blast Circuit Breakers, Vacuum and SF6 circuit breakers. Electromagnetic and Static Principle of Operation and Construction of Attracted armature, Balanced Beam, induction Disc and induction Cup relays. Relays Classification: Instantaneous, DMT and IDMT types. Application of relays: Over current/ Under voltage relays, Directionrelays, Differential Relays and Percentage Differential Relays.Universal torque equation, Distance relays: Impedance, Reactance and Mho and Off-Set Who relays, Characteristics of Distance Relays and Comparison. Static Relays: Static Relays verses Electromagnetic Relays.		Code change
		Ι	Protection, Numerical Problem on Design of CT s Ratio, Buchholtz	rods, counterpoise, surge absorber, rod gap and arcing horn, lighting arresters -	
		r	relay Protection.	expulsion type, non -linear gap type and metal oxide gapless type.	
		UNIT 4		(ii) Insulation Coordination:Volt-time	
		I	Feeder and Bus-Bar Protection	curves, basic impulse insulation levels,	

UNIT	 Protection of Lines: Over Current, Carrier Current and Three-zone distance relay protection using Impedance relays. Translay Relay. Protection of Bus bars – Differential protection. 5 Protection against over voltages Generation of Over Voltages in Power SystemsProtection against Lightning Over Voltages - Valve type and Zinc-Oxide Lighting Arresters - Insulation Coordination -BIL, Impulse Ratio, Standard Impulse Test Wave, Volt-Time Characteristics. 	coordination of insulation levels	
63 BTEE6 03 UNIT	 Economics of Power Generation: Introduction, cost of electrical energy, expression for cost of electrical energy, depreciation, power plant cost analysis, economics in plant selection, selection of types of generation and types of equipments, factors effecting economic generations and distributions, generating cost, economics of different types of generating plants. 2 Economical Operations of thermal power plants: Methods of loading turbo generators, input, output and heat rate characteristics, incremental cost, two generations units, large no of units, sequence of adding units, effects of transmission losses, economic scheduling considering transmission losses, coordination equations, penalty factors 	Switchgear & Protection UNIT 1 Static Comparators: amplitude and phase comparators, phase comparators. Introduction to (a) amplitude type, phase splitting type and sampling type, product type and coincidence type. Static Over Current Relays:Introduction to instantaneous, definite time, inverse time and directional overcurrent relays. UNIT 2 Static Differential Relays: Brief description of static differential relay schemes- single phase and three phase schemes. Introduction to static differential protection of generator and transformer. Static Distance Relays:Introduction to static impedance, reactance and mho relays. UNIT 3 Carrier Current Protection: Basic apparatus and scheme of power line carrier system. Principle of operation of directional comparison and phase comparison carrier Distance Protection:Effect of power swings on the performance of distance protection. Out of step tripping and blocking relays, mho relay with blinders. Introduction to quadrilateral and elliptical relays. UNIT 4 Circuit Breakers-I:Electric arc and its characteristics, arc interruption-high resistance interruption and current zero interruption. Arc interruption theories- recovery rate theory and energy balance theory.	Syllabus Change Code Change

		UNIT 4		Restriking voltage and recovery voltage,	
			Parallel Operations of Generators: Conditions, synchronizing current and power, two alternators in parallel (effect of change in excitation, load sharing, sharing of load currents), Infinite bus bars, active and reactive power control, synchronizing power, torque, operating limits of alternators, operating characteristics of cylindrical alternator rotor.	develop expressions for restriking voltage and RRRV. Resistance switching, current chopping and interruption of capacitive current. Oil circuit breakers-bulk oil and minimum oil circuit breakers. Air circuit breakers. Miniature Circuit breaker (MCB). UNIT 5 Digital Protection:Introduction to digital protection. Brief description of block diagram of digital relay. Introduction to digital overcurrent, transformer differential and transmission line distance protection.	
			Economics for Electrical Engineers: Concepts of physical and financial efficiencies of electrical goods and services, supply and demand, break even and minimum cost analysis, linear and nonlinear break even, min cist analysis		
64	BTEE6 04	UNIT 1 UNIT 2 UNIT 3 UNIT 4	 & Systems CLASSIFICATION OF SIGNALS AND SYSTEMS: Basic concepts & definitions, continuous & discrete time signals, systems & their classification, LT1 systems, convolution, system modeling using Differential & Difference Equations. ANALYSIS OF C.T. SINGALS: Fourier series analysis, Spectrum of C.T. signals, Fourier Transform and Laplace Transform in Signal Analysis. ANALYSIS OF D.T. SIGNALS: Discrete time Fourier series, Spectrum of D.T. signals, Discrete Time Fourier Transform (DTFT), Discrete Fourier Transform in signal analysis. Z-TRANSFORM & LAPLACE TRANSFORM: Introduction. The region of convergence for the Z-transform. The Inverse Z- transform. Two dimensional Z- transform. Properties of Z 	Advanced Power Electronics UNIT 1 AC Voltage Controllers: Principle of On-Off Control, Principle of Phase control, SinglePhase Bi-directional Controllers with Resistive Loads, Single Phase Controllers with Inductive Loads, Three Phase full wave AC controllers, AC Voltage Controller with PWM Control. UNIT 2 Cyclo-converters: Basic principle of operation, single phase to single three-phase to three-phase and three-phase to single phase cyclo-converters. Output equation, Control circuit. UNIT 3 Inverters:Principle of Operation, Single- phase bridge inverters. Three phase bridge Inverters: 180 and 120 degree of conduction. VSI and CSI. Voltage control of Single Phase and Three Phase Inverters, Harmonic analysis,harmonic reduction techniques,Pulse width modulation techniques. UNIT 4 Resonant Pulse Inverter:Series resonant inverter with unidirectional switches, parallel resonant inverter, class E resonant inverter, L-type and M-type ZCS resonant converter, ZVS resonant converter. UNIT 5 Power Supplies: Switched Mode DC Power Supplies, fly-back converter, forward converter, half and full bridge converter, resonant DC power supplies, bi-directional	New Course
			transform. Laplace transform, Properties of Laplace Transform,	power supplies. Resonant AC power supplies,	

			Application of Laplace transform to system analysis.	bidirectional AC power supplies. Multistage	
				conversions, Control Circuits: Voltage Mode	
		UNIT 5	SAMPLING: Mathematical	Control, Current Mode Control	
			theory of sampling. Sampling		
			theorem. Ideal & Real sampling. Interpolation technique for the		
			reconstruction of a signal from its		
			samples. Aliasing. Sampling in		
			freq. domain. Sampling of discrete time signals.		
			discrete time signals.		
65	BTEE6		a Control Theory	Smart Grid Technology	New Course
	05	UNIT 1	Introduction: Concept of Linear	UNIT 1 Introduction to Smart Grid: Evolution of	
			vector space Linear	Electric Grid, Concept, Definitions and	
			Independence, Bases & Representation domain and range.	Need for Smart Grid, Smart grid drivers, functions, opportunities, challenges and	
			Concept of Linearity, relaxedness,	benefits	
			time invariance, causality.	Difference between conventional & Smart	
		UNIT 2		Grid, Concept of Resilient & Self-Healing Grid, Present development & International	
		011112	State Space Approach of	policies in Smart Grid, Diverse	
			Control System Analysis: Modern Vs conventional control	perspectives from experts and global Smart	
			theory, concept of state, state	Grid initiatives. UNIT 2	
			variable state vector, state space,	Smart Grid Technologies: Technology	
			state space equations, Writing statespace equations of	Drivers, Smart energy resources, Smart substations, Substation Automation, Feeder	
			mechanical, Electrical systems,	Automation ,Transmission systems:	
			Analogous systems.	EMS, FACTS and HVDC, Wide area	
		UNIT 3		monitoring, Protection and Control, Distribution	
			State Space Representation using	Systems: DMS, Volt/Var control, Fault	
			physical and phase variables, comparison form of system	Detection, Isolation and service restoration, Outage management, High-Efficiency	
			epresentation. Block diagram	Distribution Transformers, Phase Shifting	
			representation of state model.	Transformers, Plug in Hybrid Electric	
			Signalflowgraphrepresentation.Statespace	Vehicles (PHEV).	
			representation using canonical	UNIT 3	
			variables. Diagonal matrix. Jordan canonical form ,Derivation	Smart Meters and Advanced Metering Infrastructure: Introduction to Smart	
			of transfer function from state-	Meters, Advanced Metering infrastructure	
			model.	(AMI) drivers and benefits, AMIprotocols,	
		UNIT 4		standards and initiatives, AMI needs in the smart grid, Phasor	
			Solution of State Equations:	Measurement, Unit (PMU), Intelligent	
			Diagonalization, Eigenvalues and eigen vectors. Matrix exponential,	Electronic Devices (IED) & their application for monitoring & protection.	
			State transition matrix, Properties		
			of state transition matrix.	UNIT 4 Power Quelity Management in Smart Gride	
			Computation of Statetransition matrix concepts of controllability	Power Quality Management in Smart Grid: Power Quality & EMC in Smart Grid,	
			& observability. Pole placement	Power Quality issues of Grid connected	
			by statefeedback, Ackerman's formula	RenewableEnergy Sources, Power Quality Conditioners for Smart Grid,	
			ionnaiu	Web based Power Qualitymonitoring,	
		UNIT 5		Power Quality Audit.	
			DigitalControlSystems:Introduction,sampleddata	UNIT 5 High Performance Computing for Smart	

		control systems, signal reconstruction, difference equations. The z-transform, Z- Transfer Function. Block diagram analysis of sampled data systems, z and s domain relationship, digital PID controller	Grid Applications: Local Area Network (LAN), House Area Network (HAN), Wide Area Network (WAN), Broadbandover Power line (BPL), IP based Protocols, Basics of Web Service and CLOUD Computing tomake Smart Grids smarter, Cyber Security for Smart Grid	
66	BTEE6 06A	Power Quality UNIT 1Introduction: Power Quality (PQ), PQ problems , Sags, Swells, Transients, Harmonics, Interruptions, Flicker, Voltage fluctuations, Notch. PQ Issues, Assessing PQ: Remedies Customer side of meter, Utility side of themeter. Power quality monitoring – Monitoring considerations, Historical Perspective of PQ Measuring Instruments, PQ measurement equipment, Assessment of PQ measurement data, Application of intelligent systems, PQ monitoring standards.UNIT 2 Voltage	Advanced Microprocessors	Code Change
		 Voltage Sag Analysis: Voltage sag characteristics - Methodology for computation of voltage sag magnitude and occurrence Accuracy of sag analysis Duration & frequency of sags Faults behind transformers Effect of pre-fault voltage Simple examples Voltage dip problems, fast assessment methods for voltage sags in distribution systems. UNIT 3 PQ Consideration in Industrial Power Systems: Adjustable speed drive (ASD) systems and applications Sources of power system harmonics Mitigation of harmonics Characterization of voltage sags experienced by three-phase ASD systems Types of sags and phase angle jumps Effects of momentary voltage dips on the operation of induction and synchronous motors. UNIT 4 	language programming: addressing mode and instructions of 8086, linking and execution of programs, MACRO programming, assembler directives and operators. UNIT 3 I/O Interfaces: Programmable peripheral interfacing (8255, 8155), Programmable Timer interfacing (8253, 8254), Programmable interrupt controller (8259), Serial CommunicationInterfaces. UNIT 4 Data & Memory Interfacing: A/D, D/A converter interfacing, Memory interfacing and Decoding, DMA controller. UNIT 5 Multiprocessor Configurations: 8086 based Multiprocessor systems. 8087 Numeric	
			Multiprocessor Configurations: 8086 based	

		UNIT 5 Harmonic sources from industrial loads, Locating Harmonic sources, System response characteristics, Effects of Harmonic distortion, Inter harmonics, Devices for controlling harmonic distortion.		
67	BTEE6 06B	 Power System Reliability UNIT 1 Load Forecasting:Introduction, Factors affecting Load Forecasting, Load Research, Load Growth Characteristics, Classification of Load and Its Characteristics, Load Forecasting Methods - (i) Extrapolation (ii) Co-Relation Techniques, Energy Forecasting, Peak Load Forecasting, Reactive Load Forecasting, Reactive Load Forecasting, Reactive Load Forecasting, Annual Forecasting, Weather sensitive load Forecasting, Annual Forecasting, Monthly Forecasting, Total Forecasting. UNIT 2 System Planning : Introduction, Objectives & Factors affecting to System Planning, Short Term Planning, Long Term Planning, Reactive Power Planning. UNIT 3 Reliability : Reliability, Failure, Concepts of Probability, Evaluation Techniques (i) Markov Process (ii) Recursive Technique, Stochastic Predic tion of Frequency and Duration of Long & Short Interruption, Adequacy of Reliability, Reliability Cost. UNIT 4 Generation Planning and Reliability: Objectives & Factors affecting Generation Planning, Generation Sources, Integrated Resource Planning, Generation System Model, Loss of Load (Calculation and Approaches), Outage Rate, Capacity Expansion, Scheduled Outage, Loss of Energy, Evaluation Methods. Interconnected System, Factors Affecting Interconnection under Emergency Assistance. 	Power System Instrumentation UNIT 1 Theory of Errors: Accuracy and precision, systematic and random errors, limits of error, probable error and standard deviation. Gaussian error curves, combination of errors. UNIT 2 Transducers: Construction & Operating Characteristics of active and digital transducers, Measurement of temperature, pressure, displacement, acceleration, noise level. Instrumentation for strain, displacement, velocity, acceleration, force, torque and temperature. UNIT 3 Signal Conditioning: Instrumentation amplifiers, isolation amplifiers, analog multipliers, analog dividers, function generators, timers, sample and optical and magnetic isolators. Frequency to voltage converters, temperature to current converters. Shielding and grounding. UNIT 4 Power System Instrumentation- EMeasurement of voltage, current, phase angle, frequency, active power and reactive power in power plants. Energy meters and multipart tariff meters. Basic idea of LT & HT panel's. UNIT 5 Power System Instrumentation- II:Capacitive voltage transformers and their transient behavior, Current Transformers for measurement and protection, composite	New Course
			errors and transient response.	

Transmission Planning and Reliability: Introduction, Objectives of Transmission Planning, Network Reconfiguration, System Joad Point Indices, Data required for Composite System Reliability. Parallel & Meshed Networks - Introduction, Basic Evaluation Techniques, Bus Bar Failure, Scheduled Maintenance, Temporary and Transient Failure, Weather Effects, Breaker Failure		UNIT 5	
		TransmissionPlanningandReliability:Introduction,ObjectivesofTransmissionPlanning,NetworkReconfiguration,SystemAndLoadPointIndices,DatarequiredforCompositeSystemReliability.Parallel & MeshedNetworks -Introduction,BasicEvaluationTechniques,BusBarFailure,ScheduledMaintenance,Temporaryand Transient Failure,	
68 BTEE6 06C Power system coordination and control UNIT 1 New Course 06C UNIT 1 INTRODUCTION System load characteristics, load curves dialy, weekly and annual, load duration curve, load factor, diversity factor. Reserves, spinning reserves, cold reserves, spinning techniques of forecasting, basics of power system operation and control. Digital Communication and Information Theory New Course UNIT 2 CONTROL FREAL POWER FREQUENCY CONTROL Digital Communication and delta modulation, guantzation noise in PCM and delta modulation. Signal-to- noise ratio in PCM and delta modulation, full delta modulation Bit, word and frame synchronization, Matched filter detection, UNIT 2 REAL POWER FREQUENCY CONTROL NITT 2 Fundamentals of speed governing mechanism and modeling Speed load characteristics NITT 2 Load sharing between two synchronous machines in parallel concept of control area, LFC control of a single area system: Static and dynamic analysis, uncontrolled and controlled cases, Economic Dispatch Control Multi area systems: Two area system derivation, state variable model. UNIT 2 UNIT 3 UNIT 4 Theory Probabilities for PSK, ASK, PSK & MSK techniques. Import bit by coding, Shannon's bound capacity of a Gaussian Channel, BW-S/N rade of Othogonal signal transmission] mathematical model, algorithm. Dynamic programming solution mathematical model, algorithm. Dynamic programming solution mathematical with pumped hydro UNIT 5 Coding Coding o	Theory UNIT 1 PCM & Delta Modulation Systems: PCM and delta modulation, quantization noise in PCM and delta modulation. Signal-to- noise ratio in PCM and delta modulation, T1 Carrier System, Comparison of PCM and DM. Adaptive delta Modulation. Bit, word and frame synchronization, Matched filter detection. UNIT 2 Digital Modulation Techniques: Various techniques of phase shift, amplitude shift and frequency shift keying. Minimum shift keying. Modulation & Demodulation. UNIT 3 Error Probability in Digital Modulation: Calculation of error probabilities for PSK, ASK, FSK & MSK techniques. UNIT 4 Information Theory:Amount of Information, Average Information, Entropy, Information rate, Increase in Average information per bit by coding, Shannon's Theorem and Shannon's bound Capacity of a Gaussian Channel, BW-S/N trade off, Orthogonal signal transmission. UNIT 5 Coding: Coding of Information, Hamming code, Single Parity-Bit Code, Linear	06CUNIT 1INTRODUCTION System load variation: System load characteristics, load curves daily, weekly and annual, load duration curve, load factor, diversity factor. Reserve requirements: Installed reserves, spinning reserves, cold reserves, hot reserves. Overview of system operation: Load forecasting, techniques of forecasting, basics of power system operation and control.UNIT 2 REAL POWER FREQUENCY CONTROL Fundamentals of speed governing mechanism and modeling Speed load characteristics Load sharing between two synchronous machines in parallel concept of control area, LFC control of a single area system: Static and dynamic analysis of uncontrolled case; tie line with frequency bias control of two area system modeling; static analysis, uncontrolled case; tie line with frequency bias control of two area system derivation, state variable model.UNIT 3 HYDROTHERMAL SCHEDULING PROBLEM Hydrothermal scheduling with pumped hydro	68

		hydro plant Scheduling of	
		systems with pumped hydro plant	
		during off peak seasons:	
		algorithm. Selection of initial	
		feasible trajectory for pumped	
		hydro plant Pumped hydro plant	
		as spinning reserve unit gene	
		ration of outage induced	
		constraint Pumped hydro plant as	
		Load management plant.	
		UNIT 4	
		UNIT COMMITMENT AND	
		ECONOMIC DISPATCH	
		Statement of Unit Commitment	
		(UC) problem; constraints in UC:	
		spinning reserve, thermal unit	
		constraints, hydro constraints,	
		fuel constraints and other	
		constraints; UC solution	
		methods: Priority list methods,	
		forward dynamic programming approach, numerical problems	
		.Incremental cost curve,	
		coordination equations without	
		loss and with loss, solution by	
		direct method and λ iteration	
		method. Base point and	
		participation factors. Economic	
		dispatch controller added to LFC	
		control.	
		UNIT 5	
		COMPUTER CONTROL OF	
		POWER SYSTEMS	
		Energy control centre: Functions	
		Monitoring, data acquisition and	
		control. System hardware	
		configuration SCADA and EMS	
		functions: Network topology	
		determination, state estimation,	
		security analysis and control. Various operating states: Normal,	
		alert, emergency, in	
		extremis and restorativeState	
		transition diagram showing	
		various state transitions and	
		control strategies	
		••••••••••••••••••••••••••••••••••••••	
69	BTEE6	Advanced Microprocessors	Code change
	06D	UNIT 1	
		8086 Microprocessor: Hardware	
		specifications, architecture,	
		address spaces, clock generator,	
		bus controller and arbiter,	
		Minimum and maximum mode,	
		System Bus Timing.	
		UNIT 2	
		Software & Instruction Set:	
		Assembly language	

		 programming: addressing mode and instructions of 8086, linking and execution of programs, MACRO programming, assembler directives and operators. UNIT 3 I/O Interfaces: Programmable peripheral interfacing (8255, 8155), Programmable Timer interfacing (8253,8254), Programmable interrupt controller (8259) Serial Communication interfaces. UNIT 4 Data & Memory Interfacing: A/D, D/A converter interfacing, Memory interfacing and Decoding, DMA controller. UNIT 5 Multiprocessor Configurations: 8086 based Multiprocessor systems. 8087 Numeric data processor. 		
70	BTEE6 07	 Power System Lab To study the operation of electromechanical type on inverse time over current relay by using VPL 102A. To study the operation of electromechanical type under voltage relay by using VPST-103B. To study the performance of directional over current relay using VPL-82. To study the phase to earth fault relay by balance condition using VPL-04A. To study the operational of microcontroller based biased single phase differential protection on transformer secondary relay using VPL-83. To study the characteristics of normal fuse, HRC fuse and MCB, using fuse, HRC fuse and MCB, using fuse, HRC fuse and MCB characteristics trainer VPL-03. To analyses the directional over current relay by DMT & IDMT method using VPL-81. To study the gas actuated buchholz relay. 	 Control System Lab Introduction to MATLAB Computing Control Software. Defining Systems in TF, ZPK form. (a) Plot step response of a given TF and system in state-space. Take different values of damping ratio and wn natural undamped frequency. (b) Plot ramp response. For a given 2nd order system plot step response and obtain time response specification. To design 1st order R-C circuits and observe its response with the following inputs and trace the curve. (a) Step (b) Ramp (c) Impulse To design 2nd order electrical netw following cases. (a) Under damped system (b) Over damped System. 	Syllabus Change Code change

	I			
			(c) Critically damped system.	
			7 To Study the frequency response of following compensating Networks, plot the graph and final out corner frequencies.	
			(a) Log Network	
			(b) Lead Network	
			(c) Log-lead Network.	
			8 To draw characteristics of ac servomotor	
			9 To perform experiment on Potentiomete	
			10 Check for the stability of a given closed	
			11 Plot bode plot for a 2 nd order system and	
71	BTEE6 08	 Advanced Power Electronics Lab Study and test AC voltage regulators using triac, antiparallel thyristors and triac&diac. Study and test single phase PWM inverter. Study and test buck, boost and buck-boost regulators. Study and test MOSFET chopper. Study and test Zero voltage switching. Study and test SCR DC circuit breaker. Control speed of a dc motor using a chopper and plot armature voltage versus speed characteristic. Control speed of a single-phase induction motor using single phase AC voltage regulator. (i) Study single-phase dual converter. Study one, two and four quadrant choppers (DC-DC converters). Study single-phase cycloconverter. 	 Power System Lab Study the burden effect on the performance of CT and measure ratio error. Find out the sequence components of currents in three 1-Phase transformers and 3-Phase transformer and compare their results. (i) Study over current relay. (ii) Draw the current-time characteristic of an over current relay for TMS=1 & 0.5 and PSM=1.25 & 1.0. (ii) Plot the characteristics of a percentage bias differential relay. (ii) Plot the characteristics of a percentage bias differential relay for 20%, 30% and 40% biasing. 5 Study gas actuated Buchholz relay. 6 Study under frequency relay and check it's setting experimentally. 7 Design a HV transmission line. 8 Study a typical grid substation. 	Code change
72	BTEE6 09	 Power System Design Lab 1. Generating station design: Design considerations and basic schemes of hydro, thermal, nuclear and gas power plants. Electrical equipment for power stations. 2. Auxiliary power supply scheme for thermal power plant. 3. Distribution system Design: Design of 	and buildingAdvanced Power Electronics Lab1Study and test AC voltageregulators using triac, antiparallel thyristorsand triac&diac.2Study and test single phase PWMinverter.3Study and test buck, boost and	Code Change

feeders & distributors. Calculation of voltage drops in distributors. Calculation of conductor size using Kelvin's law. 4. Methods of short term, medium term and long term load forecasting. 5. Sending end and receiving end power circle diagrams. 6. Instrument Transformers: Design considerations of CTs & PTs for measurement and protection. 7. Substations: Types of substations, various bus-bar arrangements. Electrical equipment for substations.	 buck- boost regulators. 4 Study and test MOSFET chopper. 5 Study and test Zero voltage switching. 6 Study and test SCR DC circuit breaker. 7 Control speed of a dc motor using a chopper and plot armature voltage versus speed characteristic. 8 Control speed of a single-phase induction motor using single phase AC voltage regulator. 9 (i) Study single-phase dual converter. (ii) Study speed control of dc motor using single-phase dual converter. 10 Study one, two and four quadrant choppers (DC- DC converters). 11 Study speed control of dc motor using one, two and four quadrant choppers. 12 Study single-phase cycloconverter. 	
 Signal and Systems Lab Introduction to MATLAB and its basic commands. Plot unit step, unit impulse, unit ramp, exponential, parabolic functions and sinusoidal signals Plot the linear convolution of two sequences. Plot the correlation of two sequences. Plot the correlation of two sequences. Plot the magnitude and phase spectra of a signal using Fourier transforms. Plot the magnitude and phase spectrum of signal using Fourier series. Find out the Z transform of a signal and check the stability using pole zero location. Plot the spectra of ideally sampled signals. Verification of few properties of Fourier transform. Evaluate the DTFS coefficients of a signal and plot them. 	 Smart Grid Lab Study different components of smart grid To visit thermal/nuclear power plant To design and simulate hybrid wind-solar power generation system using simulating software Study Different terminology used in power quality assessment Study and measure certain parameters of power quality in laboratory with and without power quality improvement devices. Entrepreneurship Development Definition of entrepreneur, qualities of a successful entrepreneur, Charms of being an entrepreneur, and without power in the present of the pr	New Course
	 voltage drops in distributors. Calculation of conductor size using Kelvin's law. 4. Methods of short term, medium term and long term load forecasting. 5. Sending end and receiving end power circle diagrams. 6. Instrument Transformers: Design considerations of CTs & PTs for measurement and protection. 7. Substations: Types of substations, various bus-bar arrangements. Electrical equipment for substations. Signal and Systems Lab Introduction to MATLAB and its basic commands. Plot unit step, unit impulse, unit ramp, exponential, parabolic functions and sinusoidal signals Plot the linear convolution of two sequences. Plot the correlation of two sequences. Plot the magnitude and phase spectra of a signal using Fourier transforms. Plot the magnitude and phase spectrum of signal using Fourier series. Find out the Z transform of a signal and check the stability using pole zero location. Plot the spectra of ideally sampled signals. Verification of few properties of Fourier transform. Evaluate the DTFS coefficients of a signal and plot them. 	 voltage drops in distributors. Calculation of conductor size using Kelvin's law. 4. Methods of short term, medium term and long term load forecasting. 5. Sending end and receiving end power circle diagrams. 6. Instrument Transformers: Design considerations of CTs & PTs for measurement and protection. 7. Substations, Types of substations, various bus-bar arrangements. Electrical equipment for substations. 8. Control speed of a dc motor using a chopper and plot armature voltage versus speed characteristic. 8. Control speed of a single-phase induction motor using single phase AC voltage regulator. 9 (i) Study single-phase dual converter. 9 (ii) Study speed control of dc motor using single-phase dual converter. (ii) Study speed control of dc motor using single-phase dual converter. 11. Introduction to MATLAB and its basic commands. 2. Plot the correlation of two sequences. 3. Plot the correlation of two sequences. 4. Plot the correlation of two sequences. 5. Plot the magnitude and phase spectrua of signal using Fourier transform. 8. Plot the spectra of ideally sampled signal w.r.t. sampling of Discrete time signals. 9. Verification of few properties of Fourier transform. 9. Plot the spectra of ideally sampled signal w.r.t. sampling of Discrete time signals. 9. Verification of few properties of Fourier transform. 9. Plot the spectra of ideally sampled signal w.r.t. sampling of Discrete time signals. 9. Verification of few properties of Fourier transform. 9. Futrepreneurs, Ploved measer entine parameters of power quality assessment. 5. Study and measer certain parameters of power quality assessment. 5. Study and measer certain parameters of power quality assessment. 5. Study and measer certain parameters of power quality assessment. 6. Study and measer certain parameters of powe

			3 Identification and selection of business	opportunities an	d market su
			Implementation and customer satisfaction.	s opportunities an	u market su
			4 Business crises, problem-solving attitude, c	ommunication skill	Government
			5 Knowledge based enterprises, Scope of	i entrepreneur in	present con
			entrepreneurship.		
			6 Marketing & Sales Promotion, Techno-Economic Feasibility Assessment by Preparation of Preliminary & Detailed project report.		
75	BTEE6	Minior Project - I	Discipline & Extra Curricular Activity	New Course	
76	12 BTEE7 01	Minior Project - I Training & Seminar	Discipline & Extra Curricular ActivityPower System PlanningUNIT 1Introduction of power planning, Nationaland Regional Planning, structure of P.S.,planning tools Electricity Regulation,Electrical Forecasting, forecastingtechniques modeling.UNIT 2Generation planning, Integratedpower generation cogeneration/captivePower pooling and power trading.Transmission and distribution planning.Power system Economics. Powersector finance, financial planning,participation Rural Electrificationinvestment, concept of Rational tariffs.UNIT 3Power supply Reliability, Reliabilityplanning. System operationmanagement, load prediction, reactive powerbalance	New Course	
			Online power flow studies, state estimation, computerized management, system simulator. UNIT 4 Computer aided planning, wheeling, Environmental effects, the greenhouse effect Technological impacts. Insulation coordination. Reactive compensation. UNIT 5 Optimal power system expansion planning: Formulation optimization problem incorporating the capital, Operating and maintenance cost of candidate plants of different types (Thermal, Hydro, Nuclear, Non-conventional etc.) and		

		minimum assured reliability constraint – optimization techniques for solution by programming.	
77	BTEE7 02	Power System Analysis UNIT 1 Percent and per unit quantities. Single line diagram for a balanced 3-phase system Admittance Model: Branch and node admittances Equivalent admittance network and calculation of Y bus. Modification of an existing Y bus. UNIT 2 Impendence Model: Bus admittance and 	Syllabus Change Code change
		 Fault Analysis: Analysis of single line to ground faults using symmetrical components, connection of sequence networks under the fault condition. UNIT 4 Unsymmetrical Fault Analysis: (i) Analysis of line-to-line and double line to ground faults using symmetrical components, connection of sequence under fault conditions. Analysis of unsymmetrical shunt faults using bus impedance matrix method. UNIT 5 Load Flow Analysis:Load flow problem, development of load flow equations, bus classification Gauss Seidel, Newton Raphosn, decoupled and fast decoupled methods for load flow 	

		analysis. Comparison of load flow methods.	
78	BTEE7 03	Artificial Intelligence Techniques UNIT 1 Artificial Intelligence: Introduction to AI and knowledge based Expert systems, 	Syllabus Change Title change Code change
		UNIT 4 Basic Concepts in Learning ANN: Supervised learning, Back propagation algorithm, unsupervised learning, Kohonen's top field network & Algorithm.	
		UNIT 5 Fuzzy Logic: Fuzzy logic concepts, Fuzzy relation and membership functions, Defuzzification, Fuzzy controllers, Genetic Algorithm: concepts, coding, reproduction, crossover, mutation, scaling and fitness.	
79	BTEE7 04	Non Conventional Energy Sources UNIT 1 Introduction: World energy situation, conventional and non-conventional energy sources, Indian energy scene. Tidal Energy: Introduction to tidal power. Components of tidal power plants, double basin arrangement. Power generation. Advantages and limitations of tidal power generation. Prospects of tidal energy in India.UNIT 2 Solar Energy: Solar radiation, solar radiation geometry, solar radiation on tilted surface. Solar energy collector. Flat- plate collector, concentrating collector - parabolidal and heliostat.	Code Change

		Solar pond. Basic solar power plant. Solar	
		cell, solar cell array, basic photo-voltaic power generating system.	
		UNIT 3	
		Wind Energy: Basic principle of wind energy	
		conversion, efficiency of conversion, site selection. Electric power generation-	
		basic components, horizontal axis and	
		vertical axis wind turbines, towers,	
		generators, control and monitoring	
		components. Basic electric generation schemes- constant	
		speed constant frequency, variable speed	
		constant frequency and variable speed	
		variable frequency schemes. Applications of wind energy.	
		Geothermal Energy: Geothermal fields,	
		estimates of geothermal power. Basic	
		geothermal steam power plant, binary fluid	
		geothermal power plant and geothermal preheat hybrid power plant. Advantages and	
		disadvantages of geothermal energy.	
		Applications of geothermal energy.	
		Geothermal energy in India.	
		UNIT 4	
		Nuclear Fusion Energy: Introduction, nuclear fission and nuclear fusion.	
		Requirements for nuclear fusion. Plasma	
		confinement – magnetic confinement and	
		inertial confinement. Basic Tokamak reactor, laser fusion reactor.	
		Advantages of nuclear fusion. Fusion	
		hybridand cold fusion.	
		UNIT 5 Biomass Energy: Introduction, biomass	
		categories, bio-fuels. Introduction to	
		biomass conversion technologies.	
		Biogas generation, basic biogas plants-fixed dome type, floating gasholder type,	
		Deen Bandhu biogas plant, Pragati design	
		biogas plant. Utilization of bio gas. Energy	
		plantation. Pyrolysis scheme. Alternative liquid fuels –ethanol and methanol. Ethanol	
		production.	
80	BTEE7	Power System Engineering	Code Change
	05	UNIT 1 Economic Operation of Power Systems:	
		Introduction, system constraints, optimal	
		operation of power systems. Input output,	
		heat rate and incremental rate curves	
		of thermal generating units. Economic distribution of load	
		between generating units within a	
		plant.	
		Economic distribution of load between power stations, transmission loss equation.	
		Introduction to unit commitment and	
		dynamic programming.	
		UNIT 2	

	1		
		Power System Stability-I: Power angle equations and power angle curves under steady state and transient conditions. Rotor dynamics and swing equation (solution of swing equation not included). Synchronizing power coefficient. Introduction to steady state and dynamic stabilities, steady state stability limit. UNIT 3 Power System Stability-II: Introduction to transient stability. Equal area criterion and its application to transient stability studies under basic disturbances. Critical clearing angle and critical clearing time. Factors affecting stability.	
		UNIT 4 Excitation Systems: Introduction of excitation systems of synchronous machines, types of excitation systems, Elements of various excitation systems and their control (functional block diagrams and their brief description)-DC excitation systems, AC excitation systems, brushless excitation system. Interconnected Power Systems: powers systems. Reserve capacity of power stations, spinning and maintenance resaves. Advantages and problems of interconnected power systems. Power systems inter connection in India.	
		UNIT 5 Tap Changing transformer, phase angle control and phase shifting transformer. Series compensation of transmission lines, location and protection of series capacitors, advantages and problems Introduction to power system security. Introduction to voltage stability.	
81	BTEE7 06A	Electromagnetic Field Theory UNIT 1 Introduction: Vector Relation in rectangular, cylindrical, spherical and general curvilinear coordinate system.Concept and physical interpretation of gradient, Divergence and curl, Green's Stoke's and Helmholz theorems UNIT 2 Electrostatics: Electric field vectors- electric field intensity, flux density & polarization. Electric field due to various charge configurations. The potential functions and displacement vector.	Code Change
		Gauss's law, Poisson's and Laplace's	

		equation and their solution. Uniqueness theorem. Continuity equation. Capacitance and electrostatics energy. Field determination by method of images. Boundary conditions. Field mappings and concept of field cells. UNIT 3 Magnetostatics: Magnetic field vector: Magnetic field intensity, flux density & magnetization, Bio-Savart's law, Ampere's law, Magnetic scalar and vector potential, self & mutual inductance. Energy stored in magnetic field, Boundary conditions, Analogy between electric and magnetic field, Field mapping and concept of field cells. UNIT 4 Time Varying Fields: Faraday's law, Displacement currents and equation of continuity. Maxwell's equations, Uniform plane wave in free space, dielectrics and conductors, skin effect sinusoidal time variations, reflections, refraction & polarization of UPW, standing wave ratio. Pointing vector and power considerations. UNIT 5 Transmission Lines: The high-frequency circuit. LCR ladder model. The transmission Lin equation. Solution for loss- less lines. Wave velocity and wave impedance. Reflection and Transmission coefficients at	
82	BTEE7 06B	junctions. VSWR.Computer Aided Design of ElectricalUNIT 1Basic Principles of Electrical Machine Design: Specifications, Factorsaffectingthe design, Limitations, main dimension, loadings, output equation, factor affecting the size and rating, Electrical Engineering Materials: conducting, magnetic and insulating materials.Magnetic Circuit Calculation: Ohm's law for magnetic circuit, mmf required for air gap and iron parts, tapered teeth, real and apparent flux density, magnetizing current. UNIT 2 Heating and Cooling of Electrical Machines: heat dissipation and heat flow equations, Newton's law of cooling, equations for temperature rise, Rating of Machines: Continuous, short and intermittent ratings, mean	New Course

83	BTEE7 06C	coolin mediu UNIT Comp Power Transf section equativ design UNIT Comp Machi choice loadin air ga design synch & win UNIT Comp Machi choice loadin air ga design synch & win UNIT Comp Machi choice loadin air ga Econo UNIT	 m. 3 uterAidedDesignofTransformers: rand Distribution formers, core and yoke cross ns, square and stepped core, output ons, main dimensions, types & of windings, optimization concepts. 4 uter Aided Design of Synchronous ines: Turbo and Hydro alternators, e of specific magnetic & electric ig, short circuit ratio and its effects ip length, output equation, main dimensions, flow charts for in of ronous machine, design of stator core iding. 5 uter Aided Design of Induction ines: Output equation, main isions, design criteria, flow charts for in of induction motor, air gap i, design of stator core and winding, design. 	Code Change
		express for cc power plants selecti of equ econor distrib differe types o UNIT Econo Plants genera charac genera large r units, econor	uction, cost of electrical energy, ssion ost of electrical energy, depreciation, plant cost analysis, economics in selection, ton of types of generation and types upments, factors effecting mic generations and outions, generating cost, economics of ent of generating plants 2 omical Operations of Thermal Power : Methods of loading turbo ators, input, output and heat rate eteristics, incremental cost, two ations units, no of units, sequence of adding effects of transmission losses, mic scheduling considering transmission losses, ination equations, y factors 3 o Thermal coordination: Advantages mbined operation requirement, combined working of run-off river	

		Reservoirs hydroplants and thermal plants (long term operational aspects), short term hydro thermal coordination, coordination equations, scheduling methods and applications. UNIT 4 Parallel Operations of Generators: Conditions, synchronizingcurrent and power, two alternators in parallel (effect of change in excitation, load sharing, sharing of load currents), Infinite bus bars, active and reactive power control, synchronizing power, torque, operating limits of alternators, operating characteristics of cylindrical alternator rotor. UNIT 5 Economics for Electrical Engineers: Concepts of physical and financial efficiencies of electrical goods and services, supply and demand, break even and minimum cost analysis, linear and nonlinear break even, min cist analysis	
84	BTEE7 07	Power System Planning Lab Status of National and Regional Planning, for power system 2. Write components of Structure of power system 3. Explain in detail various planning tools. 4. Write short note on Electricity Regulation 5. Modeling of Electrical Forecasting techniques 6. Transmission and distribution planning 7. concept of Rational tariffs 8. Rural Electrification	New Course
85	BTEE7 08	Power System Modelling & Simulation lab1.Simulate Swing Equation in Simulink (MATLAB)2.Modeling of Synchronous Machine.3.Modeling of Induction Machine.4.Simulate simple circuits using Circuit Maker.5.(a) Modeling of Synchronous Machine with PSS (b) Simulation of Synchronous Machine	New Course

		with FACTS device.	
		6.(a) Modeling of Synchronous Machine	
		with FACTS device (b) Simulation of Synchronous Machine	
		with FACTS devices.	
		7.FACTS Controller designs with FACT devices for SMIB system.	
86	BTEE7 09	Industrial Economics & Management1Money Banking and Trade: Functions of money, supply & demand for money, money price level & inflation, black money, meaning, magnitude & consequences. Functions of Commercial banks, banking system 	New Course
		objectives and features. Sources of public revenue, principles of taxation, direct and indirect taxes, Theory of international trade, balance of trade and payment, Foreign exchange control, devaluation New economic policy: Liberalization, extending privatization, globalization.	
		2 Management Principles: Management functions, responsibilities of management to society, development of management thought.	
		Nature of planning, decision making, management by objectives, Line and staff authority	
		relationships, decentralization and delegation of authority, span of management.	
		3 Production Management: Production planning and control, inventory control, quality control and Total quality management. ISO standards Related to quality/Environment/safety etc.	
		Tools of Project Management: CPM, PERT, project information systems. Marketing functions,	
		management of sales and advertising marketing research.	
		4 Human Resource Management: Function, application of industrial	

			psychology for selection,	
			training and recruitment.	
			Communication process, media channels and barriers to effective communication, theories of motivation, leadership.	
			5 Finance and Account Management: Engineering Economics: Investment decision, present worth, annual worth and rate of return methods. Payback time.	
			Need for good cost accounting system, cost control techniques of financial control, financial statements, financial ratios, breakeven analysis, budgeting and budgetary control.	
87	BTEE7			Title Change
00	10 BTEE7		Practical Training & Industrial Visit	Code Change
88	втее/ 11		Project-I	Title Change Code Change
89	BTEE7		·	New Course
90	12 BTEE8	Power System Analysis	Discipline & Extra Curricular Activity EHV AC/DC Transmission	Code Change
	01	UNIT 1 Power System Network Matrices-1 Graph Theory: Definitions, Bus Incidence Matrix, Y_{bus} formation by Direct and Singular Transformation Methods, Numerical Problems. Formation of Z_{Bus} : Partial network, Algorithm for the Modification of Z_{Bus} Matrix for addition element for the following cases: Addition of element from a new bus to reference, Addition of element from a new bus to an old bus, Addition of element between an old bus to reference and Addition of element between two old busses (Derivations and Numerical Problems) Modification of Z_{Bus} for the changes in network (Problems)	UNIT 1 EHV AC Transmission: Need of EHV transmission lines, power handling capacity and surge impedance loading. Problems of EHV transmission, Bundled Conductors: geometric mean radius of bundle, properties of bundle conductors. Electrostatic fields of EHV lines and their effects, corona effects: Corona loss, audio and radio noise. UNIT 2 Load Frequency Control: Introduction to control of active and reactive power flow, turbine speed governing system. Speed governing characteristic of generating unit and load sharing between parallel operating generators Method of Load Frequency Control: Flat frequency, flat tie line and tie line load bias control. Automatic generation control (description of block	
		UNIT 2 Power flow Studies-1 Necessity of Power Flow Studies – Data for Power Flow Studies – Derivation of Static load flow equations – Load flow solutions using Gauss Seidel Method: Acceleration Factor, Load flow solution with	diagram only). UNIT 3 Voltage Control: No load receiving end voltage and reactive generation. Methods of voltage control. Synchronous phase modifier Shunt capacitors and reactors, saturable reactors, Thyristorised static VAR	

and without P-V buses, Algorithm and Flowchart. Numerical Load flow Solution for Simple Power Systems (Max. 3-Buses): Determination of Bus Voltages, Injected Active and Reactive Powers (Sample One Iteration only) and finding Line Flows/Losses for the given Bus Voltages.Newton Raphson Method in Rectangular and Polar Co-Ordinates Form: Load Flow Solution with or without PV Busses- Derivation of Jacobian Elements, Algorithm and Flowchart. Decoupled and Fast Decoupled Methods Comparison of Different Methods – DC load Flow UNIT 3 Short Circuit Analysis Per-Unit System of Representation. Per- Unit equivalent reactance network of a three phase Power System, Numerical Problems. Symmetrical fault Analysis: Short Circuit Current and MVA Calculations, Fault levels, Application of Series Reactors, Numerical Problems Symmetrical Component Theory: Symmetrical Component Theory: Symmetrical Component Transformation, Positive, Negative and Zero sequence components: Voltages, Currents and Impedances. Sequence Networks: Positive, Negative and Zero sequence Networks, Numerical Problems. UNIT 4 Power System Steady State Stability Analysis Elementary concepts of Steady State, Dynamic and Transient Stabilities. Description of: Steady State Stability Power Limit, Transfer Reactance, Synchronizing Power	compensators- TCR, FC-TCR and TSC- TCR. UNIT 4 FACTS: Introduction to FACTS controllers, types of FACTS controllers, Brief description of STATCOM, Thyristor controlled series capacitors and unified power flow controller. UNIT 5 HVDC Transmission: Types of D.C. links, advantages and disadvantages of HVDC transmission. Basic scheme and equipment of converter station. Ground return. Basic principles of DC link control and basic converter control characteristics. Application of HVDC transmission.	
Stability Power Limit, Transfer Reactance, Synchronizing Power Coefficient, Power Angle Curve and Determination of Steady State Stability and Methods to improve steady state stability.		
UNIT 5 Power System Transient State Stability		

Equal A Area (Calcula Point-b improv	s Derivation of Swing Equation. ination of Transient Stability by Area Criterion, Application of Equal Criterion, Critical Clearing Angle tion Solution of Swing Equation: y-Point Method. Methods to e Stability - Application of Auto ng and Fast Operating Circuit		
91 BTEE8 02 UNIT : UNIT : UNIT :	Different form energy sources: Fossils fuels, Nuclear energy and Hydro power,-Renewable Energy Sources: Introduction to Solar energy, geo- thermal energy, tidal energy, wind energy, bio-gas energy and M.H.D. Power generation. Thermal Power Plant: Location and Site selection, general layout and working of plant, boilers, economizers, super heaters, draft equipments, fuel and ash handling plants. Gas Turbine Power Plant: Lay out, Working and components of gas turbine power plant, combined gas and steam turbine plant. Hydro Electric Plant: Location and site selection, general layout and operation of plant, Types of Hydro Turbines and their characteristics – Impulse and reaction type (Pelton Wheel, Francis and Kaplan turbines,), speed governing system. Diesel Power Plant: Layout and components of plant auxiliary equipments.	Electric Drives and Their Control UNIT 1 Dynamics of Electric Drives: Fundamental torque equations, speed- torque conventions and multi-quadrant operation, Nature and classification of load torques, steady state stability, load equalization, close loop configurations of drives. UNIT 2 DC Drives: Speed torque curves, torque and power limitation in armature voltage and field control, Starting, Braking: Regenerative Braking, dynamic braking and plugging. Speed Control-Controlled Rectifier fed DC drives, Chopper Controlled DC drives. UNIT 3 Induction Motor Drives-I: Starting, Braking- Regenerative braking, plugging and dynamic braking. Speed Control: Stator voltage control, variable frequency control from voltage source, Voltage Source Inverter (VSI) Control. UNIT 4 Induction Motor Drives-II: Variable frequency control from current source, Current Source Inverter (CSI) Control, Cycloconverter Control, Static rotor resistance control, Slip Power Recovery- Stator Scherbius drive, Static Kramer drive. UNIT 5 Synchronous Motor Drive: Control of Synchronous Motor Drives. Dynamic and Regenerative Braking of Synchronous Motor With VSI. Control of Synchronous Motor Using Current Source Inverter (CSI).	Code Change

		economic dispatch with losses; Derivation of transmission loss formula. UNIT 5 Substation Layout: Types of substations, typical layout and constructional details of pole mounted, Indoor, Outdoor sub- stations, hybrid gas insulated sub stations, bus bar arrangements, application of substation equipment like transformer , circuit breaker, isolator, metering equipments and protecting equipment , substation grounding.		
92	BTEE8 03	Electrical Machine Design UNIT 1 MAGNETIC CIRCUITS AND COOLING OF ELECTICAL MACHINES Concept of magnetic circuit – MMF calculation for various types of electrical machines – Real and apparent flux density of rotating machines – Leakage reactance calculation for transformers, Induction and synchronous machine – Thermal ratings Continuous, Short time and Intermittent – Direct and Indirect cooling methods – Cooling of turbo alternators UNIT 2 D.C. MACHINES Constructional details – Winding design – Output equation – Main dimensions – Choice of specific loadings – Choice of number of poles – Armature design – Design of field poles and field coil – Design of commutator and brushes – Losses and efficiency calculations UNIT 3 TRANSFORMERS Constructional details of core and shell type transformers – Amorphous Cores – Output rating of single phase and three phase transformers – Design of core, Yoke and windings for core and shell type transformers – Amorphous Cores – Output rating of single phase and three phase transformers – Design of core, Yoke and windings for core and shell type transformers – Equivalent circuit parameter from design data – Losses and efficiency calculations – Design of tank and cooling tubes	Protection of Power SystemUNIT 1Causes and consequences of dangerouscurrents: Faults, overloads and switchingover currents. Introduction to protection, tripcircuit of a circuit breaker. Functionalcharacteristics of a relay, zone of protection,primary and backup protection.CTs&PTs:Currenttransformerconstruction, measurement and protectiveCTs.Type of potential transformers. Steady stateratio and phase angle errors in CT and CVT(Capacitive Voltage Transformer).UNIT 2OvercurrentOvercurrent Protection: HRC fuse andthermal relay. Overcurrent relays –instantaneous, definite time, inverse timeand inverse definite minimum timeovercurrent relays, time and currentgradings.Induction disc type relay. Directionalovercurrent relay, 300, 600 and 900connections.Earth fault relay. Brief description ofovercurrent protective schemes for a feeder,parallel feeders and ring mains.UNIT 3Generator Protection: Stator protection-differential and percentage differentialprotection, protection-protectionagainstexcitation and prime mover failure, fieldearth fault and unbalanced statorcurrents (negative sequence currentprotection).UNIT 4Transformer Protection: Percentagedifferential protection, magnetizing inrushcurrent, percentage differential relay with	New Course

			harmonic restraint. Buchholz relay.	
		 UNIT 4 THREE PHASE INDUCTION MOTORS Constructional details of squirrel cage and slip ring motors – Output equation – Main dimensions – Choice of specific loadings – Design of stator – Design of squirrel cage and slip ring rotor – Equivalent circuit parameters from design data – Losses and efficiency calculations UNIT 5 SYNCHRONOUS MACHINES Constructional details of cylindrical pole and salient pole alternators – Winding design – Output equation – Choice of specific loadings – Main dimensions – Short circuit ratio – Design of stator and rotor of cylindrical pole and salient pole machines – Design of fieldcoil – Performance calculation from design data – Introduction to computer aided design 	harmonic restraint. Buchholz relay. Differential protection of generator transfer unit. Busbar Protection: Differential protection of busbars. Highimpedance relay scheme, frame leakage protection UNIT 5 Transmission Line Protection: Introduction to distance protection. Construction, operating principle and characteristics of an electromagnetic impedance relay. Effect of arc resistance.Induction cup type reactance and mho relays. Comparison between impedance, reactance and mho relays. Three stepped distance protection of transmission line. Induction Motor Protection: Introduction to various faults and abnormal operating conditions, unbalance supply voltage and single phasing. Introduction to protection of induction motors- HRC fuse and overcurrent, percentage differential, earth fault and negative sequence voltage relays	
93	BTEE8 04	Electric Drives & Their Control UNIT 1 INTRODUCTION Basic Elements – Types of Electric Drives – factors influencing the choice of electrical drives – heating and cooling curves – Loading conditions and classes of duty – Selection of power rating for drive motors with regard to thermal overloading and Load variation factors. UNIT 2 DRIVE MOTOR CHARACTERISTICS Mechanical characteristics – Speed-Torque characteristics of various types of load and drive motors – Braking of Electrical motors – DC motors: Shunt, series and compound - single phase and three phase induction motors. UNIT 3 STARTING METHODS Types of D.C Motors starters – Typical control circuits for shunt and series motors – Three phase squirrel cage and slip ring induction motors.	UNIT 1 Electric Heating: Different methods of electric heating. Principle of high frequency induction and dielectric heating.	Code Change

 UNIT 4 CONVENTIONAL AND SOLID STATE SPEED CONTROL OF D.C. DRIVES Speed control of DC series and shunt motors – Armature and field control, Ward-Leonard control system - Using controlled rectifiers and DC choppers – applications. UNIT 5 CONVENTIONAL AND SOLID STATE SPEED CONTROL OF A.C. DRIVES Speed control of three phase induction motor – Voltage control, voltage / frequency control, slip power recovery scheme – Using inverters and AC voltage regulators – applications. 	stripping (parting) power supplies for electrolytic process. UNIT 4 Electric Traction & Means of Supplying Power: Systems of Electric Traction: DC & AC Systems, Power Supply for Electric Traction System: Comparison and application of different systems. Sub-station equipment and layout, conductor rail & pantograph. UNIT 5 Traction Methods: Types of services, speed time and speed distance curves, estimation of powerand energy requirements, Mechanics of train movement. Co-efficient of adhesion, Adhesive weight, effective weight. Traction Motor Controls: DC and AC traction motors, Series parallel starting. Methods of electric braking of traction motors.	
	 BTEE804B: FACTS DEVICES & THEIR APPLICATIONS Unit 1 Problems of AC transmission systems, power flow inparallel paths and meshed system, factors limiting loading capability, Stability consideration. Power flow control of an ac transmission line. Basic types of facts controllers. Advantages of FACTS technology. Unit 2 Voltage-Sourced Converters: Basic concept of voltage-sourced converters, single and three phase bridge converters. Introduction to power factor control. Transformer connections for 12-pulse, 24 pulse and 48 pulse operations. Static Shunt Compensators: Mid-point and end point voltage regulation of transmission line, and stability improvement. Basic operating principle of Static Synchronous Compensators (STATCOM). Comparison between STATCOM and SVC. Unit 3 	

	Static Series Compensators: Concept of series capacitive compensation, voltage and transient stabilities, power oscillation and sub synchronous oscillation damping. Introduction to thyristors witched series capacitor (TSSC), thyristor controlled series capacitor (TCSC), and static synchronous series compensator, - operation, characteristics and applications.	
	Unit 4	
	Static Voltage and Phase Angle Regulators: Voltage and phase angle regulation. Power flow control and improvement of stability by phase angle regulator. Introduction to thyristor controlled voltage and phase angle regulators (TCVR and TCPAR) (ii) Introduction to thyristor controlled braking resistor and thyristor controlled voltage limiter.	
	Unit 5	
	UPFC: Unified Power Flow Controller (UPFC), basic operating principles, conventional transmission control capabilities. Comparison of UPFC to series compensators and phase angle regulator. Applications of UPFC. IPFC: Interline Power Flow Controller (IPFC), basic operating principles and Characteristics. Applications of IPFC.	
	BTEE804C: POWER SYSTEM TRANSIENTS Unit 1 Wave terminology, Development of wave quotations, Terminal problems, Lattice diagrams, Origin and Nature of power system transients and surges, Surge parameters of plants, Equivalent Circuit representations. Lumped and distributed circuit transients.	
	Unit 2 Line energisation and de-energisation transients-Earth and earthwire effects. Current chopping in circuit breakers. Short line fault condition and its relation to circuit breaker duty. Trapped charge effects. Effect of source and source representation in short line fault studies. Unit 3 Control of transients, Lightening	

			phenomenon, influence of tower footing resistance and earth resistance, Traveling waves in distributed parameters multiconductor lines, parameters as a function of frequency. Unit 4 Mechanism of Lightning Discharge Types of Lightning strokes, Harmful effects of lighting, protections against lightning, overhead Ground wires. Unit 5 Lightening Arresters, Types of lightening arresters, Surge Absorber simulation of surge diverters in transient analysis. Fourier integral and z transform methods in power system transient.	
94	BTEE8 05A	 EHV AC/DC Transmission UNIT 1 Constitution of EHV a.c. and d.c. links, Kind of d.c. links, Limitations and Advantages of a.c. and d.c. transmission, Principal application of a.c. and d.c. transmission, Trends in EHV a.c. and d.c. transmission, Power handling capacity. Converter analysis garetz circuit, Firing angle control, Overlapping. UNIT 2 FACTS devices, basic types of controller, series controller, static synchronous series compensator(SSSC), thyristor-controlled seriesreactor(TCSR), shunt controller (STATCOM), static VAR compensator(SVC), series-series controller, unified power flow controller, unified power flow controller (UPFC), thyristor controlled phase shifting transformer(TCPST). UNIT 3 Components of EHV d.c. system, converter circuits, rectifier and inverter valves, Reactive power requirements, harmonics generation, Adverse effects, Classification, Remedial measures to suppress, filters, Ground return. Converter faults & 	 BTEE805: COMPUTER BASED POWER SYSTEM LAB 1. Fault analysis (for 3 to 6 bus) and verify the results using MATLAB or any available software for the cases: (i) LG Fault (ii) LLG Fault (iii) LL Fault and (iv) 3-Phase Fault 2. Load flow analysis for a given system (for 3 to 6 bus) using (i) Gauss Seidal (ii) Newton Raphson (iii) Fast Decoupled Method and verify results using MATLAB or any available software 3. Study of voltage security analysis 4. Study of overload security analysis and obtain results for the given problem using MATLAB or any software. 5. Study of economic load dispatch problem with different methods. 6. Study of transient stability analysis using MATLAB/ETAP Software. 	New Course

protection harmonics	
misoperation, Commutation	
failure, Multi terminal D.C. lines.	
fundic, which community D.C. mices.	
UNIT 4	
Control of EHV d.c. system	
desired features of control,	
control characteristics, Constant	
current control, Constant	
extinction angle control. Ignition	
Angle control. Parallel operation	
of HVAC & DC system.	
Problems & advantages.	
UNIT 5	
Travelling waves on transmission	
systems, Their shape, Attenuation	
and distortion, effect of junction	
and termination on propagation of	
traveling waves. Over voltages in	
transmission system. Lightning,	
switching and temporary over	
voltages: Control of lighting and	
switching over voltages	
BTEE805B Intelligent and smart	
instrumentation	
UNIT-I Becomt Transla in Sensor	
Recent Trends in Sensor	
Technologies: Introduction; Film	
sensors (Thick film sensors, Thin	
film sensors);	
Semiconductor IC technology –	
standard methods; Microelectro-	
mechanical systems (Micro-	
machining, some	
application examples); Nano-	
sensors. Bulk Micromachining.	
Micromachining Surface	
Micromachining. Other	
Micromachining Techniques.	
(LIGA Process) Micromilling.	
Micromachined Materials, Digital	
transducers.	
UNIT-II	
Sensors:- Primary sensors;	
Excitation; Amplification; Filters;	
Converters; Compensation	
(Nonlinearty: look up	
table method, polygon	
interpolation, polynomial	
interpolation, cubic spline	
interpolation, Approximation &	
regression; Noise & interference;	
Response time; Drift; Cross-	
sensitivity); Information Coding/	
Processing;	
Data Communication; Standards	
for smart sensor interface.	
UNIT-III	
VI and Data Acquisition:	

Introduction to virtual	
Instrumentation, VI programming	
using LabVIEW, Signal	
Conditioning, DAQ Hardware	
Configuration, DAQ Hardware,	
DAQ Software Architecture, DAQ	
Assistant,	
Channel and Task configuration,	
Selecting and Configuring a DAQ	
device, Serial interfacing - RS	
232C, RS	
422, RS 423, RS 485.	
UNIT IV	
Instrumentation Systems:- Types	
of Instrumentation systems,	
Intelligent Instrumentation,	
Component of	
Intelligent Instrumentation	
System,	
UNIT V	
Concept of real time system and	
its industrial application,	
realization of real time system	
using microcontroller and typical	
applications.	
BTEE805CPLC and SCADA Systems	
UNIT-I	
Programmable Logic Controller	
(PLC) Basics: Introduction, Parts	
of PLC, Principles of operation,	
PLC size	
and applications, PLC Advantages	
and Disadvantages, PLC	
Manufacturers, PLC hardware	
components, I/O	
section, Analog I/O modules,	
Digital I/O modules, CPU-	
Processor memory module,	
Programming devices, Devices which can be connected	
to I/O modules, Relay, Contactor,	
SPST, Push Buttons, NO/NC	
Concept	
UNIT-II	
Programming of Programmable	
Logic Controller: General PLC	
Programming Procedures,	
Contacts and	
Coils, Program SCAN,	
Programming Languages, Ladder	
Programming, Relay Instructions,	
Instruction	
Addressing, Concept of Latching,	
Branch Instructions, Contact and	
Coil I/O Programming Examples,	
Relation of	
 inclution of	

Digital Gate Logic to Contact/Coil	
Logic.	
UNIT-III	
Programmable Logic controller	
Functions: Timer Instructions: ON	
DELAY Timer and OFF DELAY	
timer,	
Counter Instructions: UP/DOWN	
Counters, Timer and Counter	
Applications, Program Control	
Instructions:	
Master Control Reset, Jump and	
-	
Subroutine,	
UNIT-IV	
Math Instructions- ADD, SUB.	
Data Handling: Data Move, Data	
Compare, Data Selection, Electro-	
pneumatic	
Sequential Circuits and	
Applications.	
UNIT-V	
SCADA: Definition of SCADA,	
Applicable Processes, Elements of	
SCADA System, A Limited Two-	
Way	
System. Real Time Systems:	
Communication Access and	
Master-Slave determining scan	
interval. Introduction to Remote	
Control, Communications-A/D	
Conversion, Long Distance	
-	
Communication, Communication	
System	
components in brief- Protocol,	
Modems,	
Synchronous/Asynchronous	
telephone cable/radio, Half	
Duplex, Full	
Duplex System, Brief introduction	
to RTU and MTU, Applications-	
Automatic Control, Advisory	
Applications.	
BTEE805D Power line Carrier	
Communication	
UNIT- I	
Channel Characterization:	
Introduction, channel modelling	
fundamentals, model for outdoor	
channel, models for indoor	
channels, noise and disturbances	
measuring techniques, PLC	
channel emulation tools.	
Coupling: Introduction, filtering	
basics, transformer and capacitor	
coupler design, impedance	
adaptation concepts.	

		 UNIT- II Digital Transmission Techniques: Introduction, Architecture of PLC system, Narrowband and broadband PLC systems, Modulation and coding for narrow band and broad band PLC systems, Error Handling. UNIT- III PLC Networks : Introduction, Organisation and structure of PLC networks, Media Access Control layer, Multiple Access Schemes, Protocols for PLC, UNIT-IV Traffic control, Supporting Energy Management Systems, Quality of service(QOS), International standards on PLC networking Technology . UNIT-V Systems and Implementations: PLC smart grid systems, PLC broadband Access systems, Multimedia PLC systems, DC-PLC systems, PLC in emerging countries 		
95	BTEE8	BTEE806A	BTEE806	Code Change
10	06A	Power Distribution System	Electrical Drives and Control Lab	Sour Chunge
		UNIT 1 Heating and welding: Advanced and method of electric heating, resistance ovens, Induction heating, dielectric heating, the arc furnace, heating of building, electric welding, resistance and arc welding, control devices and welding equipment. 10 HOURS	 Study and test the firing circuit of three phase half controlled bridge converter. Study and obtain waveforms of 3 phase half controlled bridge converter with R and RL loads. Study and test the firing circuit of 3- phase full controlled bridge converter. 	
		UNIT 2	4. Study and obtain waveforms of 3-phase	
		Electrolytic process: Fundamental principles extraction refining of metals electroplating.	full controlled bridge converter with R and RL loads.	
		Factors affering electrode position process 06 Hours	5. Study and test 3-phase AC voltage regulator.	
		UNIT 3 Illumination: Laws of illumination, distribution and control of light lighting	6. Control speed of dc motor using 3-phase half controlled bridge converter. Plot armature voltage versus speed characteristic.	

		calculation, factory lighting, flood lighting, street lighting, different types of lamps, incandescent, fluorescent, vapour and CFL and their working, Glare and its remedy UNIT 4 Electrictraction: System of traction, speed time curve, tractive effort, co-efficient of adhesions selection of traction motors, method of control, energy saving by series parallel control, AC traction equipment. AC series motor, characteristics, regenerative braking, linear induction motor and their use. AC traction, disel electric equipmepment, train lighting system. UNIT 5 Power Factor consideration: Cause & disadvantages of LPF, methods of improvements, economic aspect Electrical Tariffs: Types of domestic & non-domestic prevailing tariff structures.	 Control speed of dc motor using 3-phase full controlled bridge converter. Plot armature voltage versus speed characteristic. Control speed of a 3-phase induction motor in variable stator voltage mode using 3-phase AC voltage regulator. Control speed of a 3-phase BLDC motor. Control speed of a 3-phase PMSM motor using frequency and voltage control Control speed of universal motor using AC voltage regulator. Study 3-phase dual converter. Study speed control of dc motor using 3-phase dual converter. Study three-phase cycloconverter and speed control of synchronous motor using cycloconverter. Control of 3-Phase Induction Motor in variable frequency V/f constant mode using 3-phase inverter 	
96	BTEE8 06B	Artificial IntelligenceUNIT 1Introduction and Intelligent systems, What Is AI, The Foundations of Artificial Intelligence, The History of Artificial Intelligence, Applications of A.I. Intelligent Agents Agents and Environments, Good Behavior: The Concept of Rationality, The Nature of Environments, The Structure of Agents, How the components of agent programs work.		Code Change

	UNIT 2	
	Solving Problems by Searching,	
	Study and analysis of various	
	searching algorithms.	
	Implementation of Depth-first	
	search Problem-Solving Agents,	
	Searching for Solutions,	
	Uninformed Search Strategies:	
	Breadth-first search, Uniform-	
	cost search, Depth-first search,	
	Depth-limited search, Iterative	
	deepening depth-first search, Bi-	
	directional search Informed	
	(Heuristic) Search Strategies:	
	Greedy best-first search A*	
	search: Minimizing the total	
	estimated solution cost,	
	Conditions for optimality:	
	Admissibility and consistency,	
	Optimality of A*, Memory-	
	bounded heuristic search,	
	Heuristic Functions, Generating	
	admissible heuristics from sub	
	F • • • • • • • • • • • • • • • • • • •	
	e	
	experience Beyond Classical	
	Search Local Search Algorithms	
	and Optimization Problems: Hill-	
	climbing search Simulated	
	annealing, Local beam search,	
	Genetic algorithms, Local Search	
	in Continuous Spaces, Searching	
	with Non-deterministic Actions:	
	AND-OR search trees, Searching	
	with Partial Observations	
	UNIT 3	
	Adversarial Search and Constraint	
	Satisfaction Problems, Study of	
	mini-max algorithm Adversarial	
	Search: Games, Optimal	
	Decisions in Games, The mini-	
	max algorithm, Optimal decisions	
	in multiplayer games, Alpha-Beta	
	Pruning, Move ordering ,	
	Imperfect Real-Time Decisions,	
	Evaluation functions, Cutting off	
	search, Forward pruning, Search	
	versus lookup, Stochastic Games,	
	Evaluation functions for games of	
	chance, Partially Observable	
	Games Constraint Satisfaction	
	Problems: Defining Constraint	
	Satisfaction Problems, Variations	
	on the CSP formalism, Constraint	
	Propagation: Inference in CSPs,	
	Backtracking Search for CSPs,	
	Local Search for CSPs, Alpha-	
	beta pruning and CSP,	
	Implementation aspects of mini-	
	max algorithm and CSP.	

		UNIT 4	
		Logical agents and Classical	
		Planning, Study and comparison	
		of knowledge representation	
		structures. Implementation	
		aspects of Backtracking algorithm	
		and forward and backward	
		chaining Logical Agents:	
		Knowledge representation	
		structures: Frames, semantic net,	
		Scripts, Logic: Prepositional	
		Logic, Prepositional Theorem	
		Proving, Inference and proofs,	
		Proof by resolution, Conjunctive	
		normal form, Horn clauses and	
		definite clauses, Forward and	
		backward chaining, A complete	
		backtracking algorithm, Syntax	
		and Semantics of First-Order	
		Logic, Symbols and	
		interpretations, Knowledge	
		Engineering in First-Order Logic,	
		Unification, Resolution,	
		Introduction to logic	
		programming (PROLOG)	
		Classical Planning: Definition of	
		Classical Planning, The	
		complexity of classical planning,	
		Algorithms for Planning as State-	
		Space Search, Forward	
		(progression) state- space	
		search, Backward (regression)	
		relevant-states search, Heuristics	
		for planning, Planning Graphs,	
		Other Classical Planning	
		Approaches, Hierarchical	
		Planning	
		i iunning	
		UNIT 5	
		Quantifying Uncertainty: Acting	
		<u> </u>	
		Probability Notation, Inference	
		Using Full Joint Distributions,	
		Bayes' Rule and Its Use,	
		Representing Knowledge in an	
		Uncertain Domain, Other	
		Approaches to Uncertain	
		Reasoning, Rule-based methods	
		for uncertain reasoning,	
1		representing vagueness: Fuzzy	
1		sets and fuzzy logic, Study of	
1		fuzzy logic and Decision trees,	
1		Implementation aspects of	
		Decision trees Learning from	
1		Examples: Forms of Learning,	
1		Supervised Learning, Learning	
1		Decision Trees, The decision tree	
1		representation, Expressiveness of	
1		decision trees, Inducing decision	
		trees from examples	
		· · · · · · · · · · · · · · · · · · ·	
97	BTEE8		Subject

	0(C	Doman Diant Instance and atter	Domonod
	06C	Power Plant Instrumentation	Removed
		UNIT 1 Power plant: Unit, overview,	
		Types of boiler, Exhaust Gas	
		Boilers and Incinerators, turbine	
		generators, condensers, material	
		handling systems. Comparison of	
		thermal power plant,	
		hydroelectric power plant,	
		Nuclear power plant, solar power	
		plant, Wind power plant.	
		UNIT 2	
		Boiler Instrumentation: Control	
		and optimization, Combustion	
		control, air to fuel ratio control, 3-	
		element drum level control, steam temperature and pressure control,	
		oxygen/CO2 in flue gases,	
		furnace draft, boiler interlocks,	
		sequence event recorder,	
		supervisor control, data	
		acquisition controls, burner	
		management systems and	
		controllers. Start-up and shut-	
		down procedures, Boiler safety	
		standard, Boiler inspection	
		procedures. Boiler load	
		calculation, boiler efficiency	
		calculation.	
		UNIT 3	
		Turbine instrumentation and	
		control, start-up and shut-down, thermal stress control, condition	
		monitoring & power distribution	
		instrumentation. Synchronous,	
		Induction generators.	
		8	
		UNIT 4	
		Hydroelectric power generation,	
		regulation & monitoring of	
		voltage & frequency of output	
		power. Pollution & effluent	
		monitoring & control. Energy	
		Management, electrical sub-	
		station controls	
		UNIT 5	
		Power Generation using non-	
		conventional energy sources viz.	
		Wind Power, solar Power, Tidal	
		Power, Plant safety &	
		redundancies. Nuclear Power	
		Generation & control Station.	
		Diesel Generator Controls.	
00	DTEFO		Title Charact
98	BTEE8 06D	Power Distribution System	Title Change Code Change
	00D	UNIT 1	Coue Change
		Introduction to sub-transmission	
		and distribution system;	

classification of loads –
residential, commercial,
agricultural, industrial and their
characteristics; distribution
system planning – short-term,
mid-term, long-term, load
modeling and characteristics;
definition of demand factor,
utilization factor, load factor,
plant factor, diversity factor, loss
factor; computer applications to
distribution system automation;
tariff.

UNIT 2

Distribution feeders, transformers and sub-stations; primary feeders – voltage level, radial and loop types, uniformly distributed and non-uniformly distributed load; design considerations for secondary system voltage level, location of substation, rating, service area with primary feeders, optimal location; existing system improvement.

UNIT 3

System analysis - voltage drop and power loss calculation; methods of solution for radial networks, three-phase balanced primary lines, non-three-phase primary lines; loss reduction, voltage voltage regulation, control and improvement, issues in quality of service - voltage sag, swell and flicker; application of capacitors to distribution system effect of series and shunt capacitors, power factor correction, economic justification for capacitor with cost-benefit analysis aiming at most economic power factor, optimum location of capacitor.

UNIT 4

Distribution sub-station bus schemes, description and comparison of switching schemes; types of common faults and procedure for system fault calculation; protection – objectives, over current protection devices – fuses,

UNIT 5

Automatic circuit re-closer, automatic line sectionalizing, coordination of protective devices fuse to fuse, fuse to circuit

		breaker, re-closer to circuit breaker		
99	BTEE8 07	Electric Machine Design Lab To design the following parts of the electrical machines by using C++/MATLAB or any other related software. 1. Design of Armature 2. Design of Commutator 3. Design of Commutator 3. Design of Magnetic Core of Transformer 5. Design of notor bars and slots of squirrel cage induction motor 6. Design of rotor core of slip ring induction motor 7. Design of salient pole rotor of synchronous machine 8. Design of stator core and winding for synchronous machine 9. Design of rotor for turbo alternators 10. Design of damper winding	 High Voltage Engineering Lab Study filtration and Treatment of transformer oil. Determine dielectric strength of transformer oil. Determine capacitance and dielectric loss of an insulating material using Schering bridge. Study solid dielectrics used in power apparatus. Study applications of insulating materials. Study direct testing and indirect testing of circuit breakers. Study high voltage testing of electrical equipment: line insulator, cable, bushing, power capacitor, and power transformer. 	New Course
10 0	BTEE8 08	 Electric Drives & Control Lab Study and test the firing circuit of three phase half controlled bridge converter. Study and obtain waveforms of 3 phase half controlled bridge converter with R and RL loads. Study and test the firing circuit of 3-phase full controlled bridge converter. Study and obtain waveforms of 3-phase full controlled bridge converter. Study and obtain waveforms of 3-phase full controlled bridge converter. Study and test 3-phase AC voltage regulator. Control speed of dc motor using 3-phase half controlled bridge converter. Plot armature voltage versus speed characteristic. Control speed of dc motor using 3-phase full controlled bridge converter. Plot armature voltage versus speed characteristic. Control speed of a 3-phase full controlled bridge converter. Control speed of a 3-phase full controlled bridge converter. Control speed of a 3-phase full controlled bridge converter. Study and test attor voltage regulator. Control speed of a 3-phase full controlled bridge converter. 		Title Change Code Change

10	BTEE8	MAT Lab for Electrical Engineers		Code change
1	09	1. Fault analysis (for 3 to 6 bus) and verify		_
		the results using MATLAB or any		
		available software for		
		the cases: (i) LG Fault (ii) LLG Fault (iii)		
		LL Fault and (iv) 3-Phase Fault		
		2. Load flow analysis for a given system		
		(for 3 to 6 bus) using (i) Gauss Seidal (ii)		
		Newton Raphson		
		(iii) Fast Decoupled Method and verify		
		results using MATLAB or any available		
		software		
		3. Study of voltage security analysis		
		4. Study of overload security analysis and		
		obtain results for the given problem using		
		MATLAB or		
		any software.		
		5. Study of economic load dispatch		
		problem with different methods.		
		6. Study of transient stability analysis		
		using MATLAB		
			Seminar	
10	BTEE8	Seminar		New Course
2	10		Discipline & Extra Curricular Activities	